Aniks-lift.ru

Подъемное оборудование
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Разновидности термообработки стали и металлов

Разновидности термообработки стали и металлов

Термообработка — основополагающий химический процесс, проводимый при работе со сплавами. В черной и цветной металлургии методика берется за основу и имеет огромное количество различных вариаций. От правильного проведения операции зависят химические, технические и механические свойства металла. Все виды термообработки стали подразделяются на определённые группы, что позволяет подбирать рациональные вариации.

Термообработка стали – Закалка

Термообработка разных марок стали – основные операции

Каждый из видов термической обработки стали представляет собой сложный производственный комплекс. Среди различных процессов базовыми являются:

Отжиг

Закалка

Отпуск

Первого рода – рекристаллизационный, гомогенизацонный, изотермический

В одном охладителе

Второго рода – диффузионный, полный, неполный, светлый, сфероидизирующий

Муфельные печи позволяют осуществлять термообработку металла предельно четко. Благодаря современному оборудованию легко выставлять и поддерживать температуру необходимое количество времени

Нормализация, Глава 2.Термическая обработка цветных металлов

Термическая обработка цветных металлов. Как правило, цветные металлы подвергают термической обработке для удобства работы с ними.

Медь отжигают, нагревая ее до температуры 500— 650°С и охлаждая в воде. Если мягкую медь нагреть, а потом постепенно охладить на воздухе, она станет более твердой.

Латунь и алюминий отжигают при нагревании соответственно до 600—750°С и 350—410°С с последующим охлаждением на воздухе.

Бронзу закаливают нагреванием до 800—850°С с последующим охлаждением в воде. Если ее нагреть до той же температуры и охладить на воздухе, она отпустится.

Дюралюминий Д1 и Д6 закаливают нагреванием до 500°С с последующим охлаждением в воде, однако окончательную твердость он приобретет при комнатной температуре через 4—5 дн. Этот процесс называется старением. Для облегчения сгибания, особенно под острыми углами, дюралюминиевые детали отжигают. Для этого деталь нагревают до 350—400°С, затем медленно охлаждают на воздухе.

Читайте так же:
Как сделать четверть в доске

Криогенная обработка

Мартенситная составляющая в структуре большинства сталей и сплавов может появиться не только при повышенной, но и при пониженной температуре. Технология обработки холодом выгодно отличается от традиционных технологий термической обработки следующим:

Криогенная обработка

    В результате криогенной обработки количество остаточного аустенита в сталях снижается. Это стабилизирует размеры деталей (что особо важно для высокоточного инструмента), повышает Криогенная обработка

Особый вид термообработки представляют процессы химико-термической обработки. Их задачей является формирование в поверхностной микроструктуре карбидов и нитридов – соединений, существенно увеличивающих микротвёрдость деталей, и создающих в них остаточные напряжения сжатия. Такие изделия показывают особо высокую стойкость при знакопеременных нагрузках.

Особенности отжига различных сплавов

При назначении способа и режима термообработки важен процент содержания в нем углерода и других примесей. Для точности соблюдения режима рекомендуют использовать две печи: в 1-ой изделие проходит нагрев при t=max , во 2-ой — проходит выдержку, обеспечивающую завершение структурных преобразований металла.
Обработка нержавеющей стали в первой печи происходит с t=1000°С, затем выдержка несколько часов во 2-ой при t=900, завершает охлаждение до t=300° на скорости 50…100 град/ час, окончательное охлаждение производят на открытом пространстве.

Закалка стали

Легирующие элементы – хром, вольфрам, молибден, повышают устойчивость аустенита. И сталь при охлаждении на воздухе претерпевает мартенситное превращение. Легирование никелем и марганцем не только повышает устойчивость аустенита, но и смещает температуру мартенситного превращения ниже комнатной. Такая сталь после охлаждения на воздухе сохраняет структуру аустенита и относится к аустенитному классу. Закалка стали является основной упрочняющей операцией термической обработки. Сталь после закалки имеет высокую твердость, но пониженную вязкость и пластичность. Доэвтектоидные стали нагревают при закалке выше АС3 для получения структуры аустенита. Заэвтектоидные стаи нагревают до температуры на 30 – 50 градусов выше АС1. Образуется аустенит и вторичный цементит.

Читайте так же:
Лобзик для резьбы по дереву

Скорость охлаждения при закалке должна быть выше критической. То есть, достаточно высокой, чтобы не произошел распад аустенита. Критическая скорость охлаждения стали зависит от ее химического состава. Самую высокую критическую скорость охлаждения имеют углеродистые стали. Поэтому, закалку этих сталей производят в воде. Теплоотвод при закалке осуществляется через поверхность изделия. Поэтому, скорости охлаждения на поверхности и в сердцевине изделия различны. Если скорость охлаждения в сердцевине выше критической, то сталь приобретает мартенситную структуру по всему сечению. То есть, сталь имеет сквозную прокаливаемость.

Если же скорость охлаждения сердцевины ниже критической, то сталь приобретает мартенситную структуру не по всему сечению. То есть, сталь имеет определенную глубину прокаливаемости. Чем выше скорость охлаждения и чем больше легирована сталь, тем выше у нее прокаливаемость. За толщину закаленного слоя, условно принимают расстояние от поверхности до полумартенситной зоны. Диаметр заготовки, в центре которой после закалки образуется полумартенситная структура, называют критическим диаметром. Для определения прокаливаемости стали используют также торцевую пробу. При которой образец определенной формы и размеров закаливается струей воды с торца. За глубину прокаливаемости принимают расстояние от торца до зоны с твердостью, соответствующей для данной стали 50% мартенсита в структуре.

Неравномерное охлаждение при закалке, особенно длинномерных и плоских деталей, приводит к их короблению и деформации. Деформация плоских деталей устраняется при их отпуске в прессах. После закалки детали подвергают отпуску для уменьшения хрупкости и напряжений, вызванных закалкой. Низкотемпературный отпуск применяют для изделий из инструментальных и закаленных цементитовых сталей. Его продолжительность от 1 до 2,5 часов. Для пружин и рессор применяют средний температурный отпуск.

Структуру после среднетемпературного отпуска называют трооститом отпуска. При выборе температуры отпуска необходимо учитывать возможность появления необратимой отпускной хрупкости. Изделие приобретает твердость 40 – 50 HRC и высокие значения пределов упругости, выносливости, а также релаксационной стойкости. Высокотемпературный отпуск применяют для деталей машин, изготовленных из среднеуглеродистых конструкционных сталей. Структура — сорбит отпуска. Сталь имеет невысокую твердость и прочность, но высокую ударную вязкость и пластичность.

Читайте так же:
Варианты расположения точечных светильников на натяжном потолке

Термомеханическая обработка

Термомеханическая обработка (Т.М.О.) — метод упрочнения металлов и сплавов при сохранении достаточной пластичности, совмещающий пластическую деформацию и упрочняющую термическую обработку (закалку и отпуск).

Различают три основных способа термомеханической обработки.

  1. Низкотемпературная термомеханическая обработка (Н.Т.М.О). Основой служит ступенчатая закалка металла (пластическая деформация металла осуществляется при температурах относительной устойчивости аустенита с последующей закалкой и отпуском).
  2. Высокотемпературная термомеханическая обработка (В.Т.М.О) — пластическая деформация проводится при температурах устойчивости аустенита с последующей закалкой и отпуском.
  3. Предварительная термомеханическая обработка (П.Т.М.О) деформация при этом может осуществляться при температурах Н.Т.М.О и В.Т.М.О или при температуре 20С. Далее осуществляется обычная термическая обработка: закалка и отпуск.

Назначение и виды химико-термической обработки

Химико-термическая обработка — это процесс, который представляет собой взаимосвязь термического и химического воздействия, с целью изменения состава сплава или металла, его молекулярной структуры, а также свойств поверхностного слоя стали.

Цель химико-термической обработки — повышение поверхностной твердости, износостойкости, предела выносливости, коррозионной стойкости, жаростойкости (окалиностойкости), кислотоустойчивости металла или сплава.

Виды химико-термической обработки металлов и сплавов

  1. цементация
  2. нитроцементация
  3. азотирование
  4. цианирование,
  5. диффузионная металлизация.

Цементация.

Процесс поверхностного насыщения углеродом, произведенный с целью поверхностного упрочнения деталей.

В зависимости от применяемого карбюризатора цементация подразделяется на три вида: цементация твердым карбюризатором; газовая цементация (метан, пропан, природный газ).

Цементация металла. Термохимическая обработка металлов и сплавов.

Газовая цементация.

Детали нагревают до 900–950єС в специальных герметически закрытых печах, в которые непрерывным потоком подают цементующий углеродосодержащий газ [естественный (природный) или искусственный].

Процесс цементации в твердом карбюризаторе заключается в следующем. Детали, упакованные в ящик вместе с карбюризатором (смесь древесного угля с активизатором), нагревают до определенной температуры и в течении длительного времени выдерживают при этой температуре, затем охлаждают и подвергают термической обработке.

Читайте так же:
Краскопульт механический ручной для побелки

Цементации любым из рассмотренных выше способов подвергаются детали из углеродистой и легированной стали с содержанием углерода не более 0,2%. Цементация легированных сталей, содержащих карбидообразующие элементы Cr, W, V, дает особо хорошие результаты: у них, кроме повышения поверхностной твердости и износостойкости, увеличивается также предел усталости.

Нитроцементация.

Цианирование в газовых средах (нитроцементация). Процесс одновременного насыщения поверхности детали углеродом и азотом. Для этого детали нагревают в среде, состоящей из цементующего газа и аммиака, то есть нитроцементация совмещает в себе процессы газовой цементации и азотирования.

Азотирование.

Процесс насыщения поверхностного слоя различных металлов и сплавов, стальных изделий или деталей азотом при нагреве в соответствующей среде. Повышается твердость поверхности изделия, выносливости, износостойкости, повышение коррозионной стойкости.

Цианирование.

Насыщение поверхностного слоя изделий одновременно углеродом и азотом.

В зависимости от используемой среды различают цианирование:

  • в твердых средах;
  • в жидких средах;
  • в газовых средах.

В зависимости от температуры нагрева цианирование подразделяется на:

  • низкотемпературное
  • высокотемпературное.

Цианирование в жидких средах производят в ваннах с расплавленными солями.

Диффузионное насыщение металлами и металлоидами

Существуют и применяются в промышленности способы насыщения поверхности деталей различными металлами (алюминием, хромом и др.) и металлоидами (кремнием, бором и др.) Назначение такого насыщения – повышение окалиностойкости, коррозионностойкости, кислотостойкости, твердости и износостойкости деталей. В результате поверхностный слой приобретает особые свойства, что позволяет экономить легирующие элементы.

Алитирование – процесс насыщения поверхностного слоя стали алюминием для повышения жаростойкости (окалиностойкости) и сопротивления атмосферной коррозии. Алитирование проводят в порошкообразных смесях, в ваннах с расплавленным алюминием, в газовой среде и распыливанием жидкого алюминия.

Хромирование – процесс насыщения поверхностного слоя стали хромом для повышении коррозионной стойкости и жаростойкости, а при хромировании высокоуглеродистых сталей – для повышения твердости и износостойкости.

Читайте так же:
Как быстро разрядить аккумулятор шуруповерта

Силицирование – процесс насыщения поверхностного слоя детали кремнием для повышения коррозионной стойкости и кислотостойкости. Силицированию подвергают детали из низко- и среднеуглеродистых сталей, а также из ковкого и высокопрочного чугунов.

Борирование – процесс насыщения поверхностного слоя детали бором. Назначение борирования – повысить твердость, сопротивление абразивному износу и коррозии в агрессивных средах, теплостойкость и жаростойкость стальных деталей. Существует два метода борирования: жидкостное электролизное и газовое борирование.

Сульфидирование – процесс насыщения поверхностного слоя стальных деталей серой для улучшения противозадирных свойств и повышения износостойкости деталей.

Сульфоцианирование – процесс поверхностного насыщения стальных деталей серой, углеродом и азотом. Совместное влияние серы и азота в поверхностном слое металла обеспечивает более высокие противозадирные свойства и износостойкость по сравнению насыщение только серой.

Компания ЛК «Урал» предлагает услуги термомеханической обработки металлов и сплавов. Воспользоваться услугами термической обработки металла, можно обратившись по телефонам в Бийске: 8 (3854) 43-08-23 или 8 (961) 989-90-85 .

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector