Aniks-lift.ru

Подъемное оборудование
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как проверить трансформатор в микроволновке

Как проверить трансформатор в микроволновке

Трансформатор для микроволновки — важное звено цепи, генерирующей СВЧ-излучение. Это преобразователь напряжения электросети до величины, подаваемой на вход магнетрона. Высоковольтный преобразователь нередко становится причиной поломки микроволновой печи.

Проверка трансформатора на работоспособность — обязательный пункт в перечне мероприятий по технической диагностике для выяснения причин неисправности. Так как речь идет о высоких напряжениях, самостоятельное вмешательство возможно лишь при соблюдении всех мер безопасности.

Зачем нужен блок питания

С его помощью осуществляется преобразование переменного напряжения в постоянное нескольких видов, предназначенное для обеспечения работы компьютера. Вне зависимости от используемой марки БП его параметры на выходах устройства должно соответствовать нормативным показателям. Если хотя бы в одном случае выходное напряжение в блоке питания не будет соответствовать нормативному, это может стать причиной неисправности компьютера.

Первоначальная проверка должна включать определение величины всех видов выходного напряжения. Оно должно отличаться от заявленного не больше, чем на 5 %. Делая блок питания своими руками, необходимо контролировать то, какое выходное напряжение он даёт.

Самодельный тестер Тестируем блок питания

Функции и устройство инвертора

Инверторное устройство является важным компонентом монитора. В электронной схеме он выполняет несколько функций, обеспечивающих нормальную работу экрана:

  • Преобразование постоянного напряжения величиной 12 вольт в переменное высоковольтное напряжение.
  • Стабилизация и регулировка тока, поступающего на лампу.
  • Регулировка яркости в требуемом диапазоне.
  • Согласование собственного выходного каскада с сопротивлением ламп на входе.
  • Защищает от перегрузок и коротких замыканий.

Несмотря на конструктивные особенности различных моделей, общие принципы структуры и работы инверторов в целом одинаковые. За счет этого ремонт и проверка инвертора значительно упрощается.

Типовая схема инвертора отражена на представленном ниже рисунке. Хорошо просматривается блок, объединяющий дежурный режим и функцию включения устройства, выполненный с использованием ключей Q1 и Q2. Как правило, монитор включается не сразу, а через определенное время, поэтому включение инвертора также происходит с задержкой. После перевода кнопки включения в нужное положение, напряжение с главной платы поступает к инвертору, и он начинает действовать в рабочем режиме. С помощью этого же блока инвертор отключается, когда монитор переводится в экономичный режим.

Когда в транзистор Q1 поступает напряжение в 3-5 В, необходимое для включения, он открывается и пропускает напряжение в 12 вольт к основной схеме инвертора. Она состоит из ШИМ-регулятора (3) и блока, отвечающего за контроль яркости (2).

К этому блоку от регулятора яркости подходит напряжение с главной платы. Далее, в результате преобразований, оно становится равным напряжению обратной связи и вырабатывает сигнал ошибки, задающий частоту импульсов на ШИМ. С помощью импульсов осуществляется управление преобразователем DC/DC (1) и синхронизация преобразователя. Их амплитуда всегда находится на одном уровне и зависит от питающего напряжения 12 В. На частоту импульсов оказывают влияние максимальное напряжение и напряжение яркости.

Читайте так же:
Из чего сделать комнатную антенну для телевизора

Преобразователь DC/DC поддерживает на одном уровне состояние высокого напряжения, поступающего к автогенератору. Включение генератора и его управление производится импульсами ШИМ. Переменное напряжение инвертора на выходе зависит от характеристик элементов, используемых в схеме, а показатели частоты определяются параметрами ламп подсветки и регулятора яркости.

Анализ уровня выходного тока или напряжения выполняется защитным узлом (5, 6), после чего он производит выработку напряжений обратной связи и перегрузки, попадающих в контрольный блок (2) и ШИМ (3). В случае перегрузок и коротких замыканий любое из напряжений может превысить пороговое значение. Это приводит к автоматическому отключению автогенератора.

В экранной компоновке основные элементы – блок управления, ШИМ и блок контроля – объединяются в общую микросхему. Для преобразователя используются дискретные элементы, а в качестве нагрузки установлен импульсный трансформатор с дополнительной обмоткой, осуществляющей коммутацию напряжения при пуске.

Методы диагностики силовых трансформаторов

Диагностика включает в себя:

  • проверку масла в трансформаторе;
  • проверку целостности обмотки и всех имеющихся изоляторов;
  • проверку вентиляции;
  • диагностику главных переключателей.

Во время проведения диагностики выявляют все возможные радиологические помехи. Большое внимание уделяют наличию влаги в масле трансформатора. Далее полностью осматривают масло. Во время диагностики учитывают и качество заземления.

В системе вентиляции исследуют такие параметры:

  • вибрационные шумы в подшипниках;
  • качество основного воздушного потока;
  • чистоту видимых поверхностей;
  • средние показатели переменного тока во внешней обмотке.

Чтобы определить степень износа внешней изоляционной обмотки, необходимо выявить степень концентрации некоторых производных химических веществ и произвести замеры степени полимеризации. Текущие проверки обычно осуществляют раз в месяц.

Как почистить блок питания и заменить вентилятор в нем

Очень частая проблема в работе блока питания компьютера связана с его перегревом из-за недостаточной вентиляции и присутствии пыли на его управляющей плате.

Обычно по перегреву срабатывает защита и компьютер отключается.

Для чистки блока питания его необходимо отсоединить все разъемы питания от комплектующих и вынуть его из корпуса системного блока (ссылка на статью «Как разобрать компьютер»).

Блок питания

Блок питания

После этого нужно открутить 4 винта крепления крышки блока питания (один из них обычно скрыт под наклейкой) и движением вверх аккуратно снять ее.

Далее снимаем вентилятор блока питания, открутив 4 винта его крепления и откладываем в сторону.

Затем берем в руки пылесос и кисточку и аккуратно проводя кисточкой по плате собираем пыль пылесосом.

Читайте так же:
Заточка охотничьих ножей в домашних условиях видео

Чистка блока питания компьютера

Чистка блока питания компьютера

Если вентилятор работает шумно или вообще не крутиться можно заменить его или смазать. Для замены необходимо купить новый и подсоединить его к плате.

Примечание: перед заменой рекомендуется вначале проверить подается ли вообще напряжение на вентилятор с помощью мультиметра

Для смазки вентилятора необходимо аккуратно, чтобы можно было вернуть на место, снять защитную наклейку и резиновую заглушки с него, залить несколько капель масла, прокрутить немного и собрать его.

После чистки и смазки вентилятора необходимо произвести его сборку в обратном порядке.

Как провести диагностику (поэтапно)

ШАГ 1

Для начала (прежде чем переходить к тестам) попробуйте посмотреть 👉 журналы Windows — туда ОС заносит все события, в т.ч. и ошибки с перезагрузками. Нередко, когда в журнале прямым текстом указывает причина проблему.

Как открыть журналы : нажать Win+R, и использовать команду eventvwr. Далее необходимо перейти во вкладку «Система» и просмотреть список событий: ищите по дате и времени «нужный сбой» — в описании указывается, что произошло. 👇

Просмотр событий

👉 Важное уточнение*

Хочу сразу сказать, что тот же блок питания (да и ряд др. «железок») на мой взгляд нельзя корректно протестировать с помощью мультиметра и утилит (а то некоторые в комментариях ссылаются на мультиметр, как на последнюю инстанцию. ) .

Например, БП может корректно запускаться и выдавать вроде как норм. напряжения по всем линиям. Но при установке его в системный блок — тот иногда может перезагружаться (внезапно). И с первого взгляда непонятно, это из-за БП, ЦП, памяти, мат. платы.

Но если взять БП, установить его на стенд, подключить нагрузочные сопротивления (АЦП с регистрацией данных) — то через 30-40 мин. можно заметить, что напряжение на одной из линий просело буквально на секунду. (вот и причина сбоя в работе ПК)

Такую неисправность с помощью программ и мультиметра «не поймаешь» (правда, никто не отрицает, что с его помощью можно быстро выявлять наиболее очевидные проблемы. ).

Но тем не менее, даже в домашних условиях при поэтапном тестировании «железок» с помощью спец. софта — можно диагностировать и выявить очень многое. (о этом и заметка 👇)

ШАГ 2

Для дальнейшей работы нам понадобиться LiveCD-флешка (с которой мы запустим Windows и будем проводить тесты). Это позволит нам сразу же отсечь потенциально-возможные проблемы в текущей установленной ОС (конфликты драйверов, системные ошибки и т.д.).

На текущий момент для нашей задачи я бы порекомендовал использование LiveCD от Сергея Стрельца. Ссылочка на образ приведена чуть ниже. 👇

👉 В помощь!

LiveCD для аварийного восстановления Windows — моя подборка

Какие программы есть на LiveCD-флешке

Какие программы есть на LiveCD-флешке «Стрельца. «

Читайте так же:
Из чего состоит холодная сварка

ШАГ 3

Загрузившись с LiveCD-флешки (👉 как это сделать) нам понадобиться инструмент OCCT. Для его запуска — зайдите в меню ПУСК и откройте вкладку «Диагностика» (скрин ниже 👇).

Также эту программу можно загрузить с офиц. сайта www.ocbase.com.

OCCT — это спец. утилита для всесторонней диагностики различных железок ПК (блока питания, видеокарты, работы системы охлаждения. Позволяет вести мониторинг температур, и пр.).

Разумеется, нам придется немного ней поэкспериментировать.

Запускаем OCCT, загрузившись с LiveCD

Запускаем OCCT, загрузившись с LiveCD

Далее необходимо в нижней части окна (слева) указать «железку», которую планируется протестировать и нажать на ПУСК (по умолчанию тестируется ЦП (да и система в целом), если нужен БП — выбирайте «Power», если видеокарта — «3D» и т.д. ).

Выбор теста

После запуска теста — внимательно наблюдайте за поведением ПК, температурой, наличием ошибок, напряжением, частотами (все эти показатели отображаются на графиках в правой части окна. 👇

👉 Что касается напряжений — то по стандарту ATX допускается отклонения до ±5% (по линиям 12V, 5V, 3,3V). Всё что выходит из диапазона — крайне нежелательно, и указывает на возможную проблему с БП. Например, в моем случае крайнее значение «просадки» БП по линии 12V равно 11,9V, что на 0,8% меньше, чем должно быть (это в пределах нормы). 👉 Как считать проценты

Вообще, при сильных просадках напряжения — вы сразу же заметите нестабильное поведение ПК (в этом случае остановите тест!). Например, не так давно на одной машине линия 3,3V падала до 2,5V — появлялись артефакты, система зависала, были перезагрузки.

В любом случае, при каких-то значимых колебаний напряжений — БП нуждается в доп. перепроверке (ремонте). Использование его крайне нежелательно. Кстати, еще об одном тесте БП в утилите AIDA рассказано на страничке: https://www.softsalad.ru/articles/instructions/power-supply-testing

OCCT — напряжения

👉 Что касается температур:

в идеале, чтобы, достигнув какого-то порога (например, в 70-80°C) они дальше не росли (т.е. система охлаждения при этих значениях должна работать макс. эффективно).

Если температура при тестах растет, и не думает снижаться (достигла 80-90°C) — я посоветовал бы сразу же остановить тест и обратить внимание на систему охлаждения. Возможно, стоит установить более мощный кулер.

👉 В помощь (более подробно о диапазонах температур)!

1) Температура процессора Intel: как ее узнать; какую считать нормальной, а какую перегревом

2) Температура процессоров AMD Ryzen: какую считать нормальной (рабочей), а какую перегревом. Несколько способов снижения температуры (t°C)

OCCT — температуры

Кстати, не лишним будет также заглянуть во вкладку «Частоты» . Именно от «этих графиков» зависит производительность ЦП под нагрузкой. Если все хорошо, — они должны иметь вид «прямой» с небольшими (едва заметными) отклонениями (👇).

Читайте так же:
Все о биполярных транзисторах

Но из-за роста температуры, проблем с питанием, ошибок и пр. — частота «может прыгать». И это не есть хорошо, но о выводах чуть ниже.

OCCT — частоты

👉 Кстати!

Что касается проверки видеокарты — то мне в этом плане больше нравится утилита FurMark (о том, как с ней работать — см. вот эту запись).

👉 ШАГ 4: выводы и результаты. Что делать дальше

В идеале компьютер должен стабильно и без сбоев отработать 30-40-50 мин. тестирования (без каких-либо ошибок, подвисаний, синих экранов и т.д.). В этом случае машина (в общем-то) в полном порядке, и никаких доп. действий не требуется.

👉 Если в процессе теста — температуры вышли из оптимальных значений (а это бывает наиболее часто):

  • проведите чистку ПК от пыли (замените термопасту);
  • если это не даст результатов — возможно стоит заменить кулер (вентилятор + радиатор) на более мощный. Также не лишним будет установить доп. кулеры в системный блок: на вдув/выдув; (в ней я привел еще неск. способов снижения температуры, в т.ч. временных).

👉 Если напряжения вышли за ±5% по линиям 12V, 5V, 3,3V (+ также возможно компьютер резко выключился, как при откл. электричества) — необходимо попробовать протестировать работу ПК с другим блоком питания (+ весьма желательно протестировать текущий БП на стенде (если он стоит того)).

В любом случае «резкие» и внезапные отключения, перезагрузки (без появления каких-либо ошибок) — свойственны как раз проблемам с БП (не всегда, но наиболее часто). И именно с него стоит начинать диагностику.

👉 При скачках частот ЦП (отсутствии стабильности) — необходимо проверить:

  • значения температур (не перегревается ли ЦП, ссылки приводил выше);
  • настройки электропитания (не включен ли экономный режим); , разгон, настройки BIOS — всё ли в оптимальных значениях. Для начала можно порекомендовать сбросить BIOS (UEFI) в оптимальные значения.

👉 При появлении синих экранов, «вылетов» программы OCCT, артефактов и пр. ошибок — посоветовал бы следующее:

Проверка полярности трансформатора

Полярность трансформатора важна при параллельном подключении трансформаторов для усиления мощности или подключении нескольких однофазных трансформаторов чтобы получить трехфазный.

Значки полярности показывают соединения, в которых входное и выходное напряжения имеют одинаковую полярность. В данный момент времени, это важно при подключении трансформаторов тока для релейной защиты и измерения.

Полярность трансформатора зависит от того, намотаны ли катушки вокруг сердечника по часовой стрелке или против часовой стрелки и как подключены провода. Часто метки полярности отображаются с использованием символов, таких как метка точки или плюс-минус, на трансформаторе и паспортной табличке.

Как проверить полярность трансформатора.

Вы можете легко проверить полярность трансформатора, используя источник пониженного напряжения для возбуждения первичной обмотки. Сначала переместите клемму H1 на клемму X1 трансформатора. Затем подключите вольтметр между клеммой H2 и X2. Примените уменьшенное напряжение через H1 и H2 и запишите напряжение, измеренное на счетчике.

Читайте так же:
Антенна мотылек своими руками

Внимание: Используйте минимальное переменное напряжение, способное возбуждать обмотку для снижения риска поражения током. Для поддержания минимального тестового напряжения рекомендуется использовать регулируемый источник напряжения переменного тока (типа ЛАТР).
Если значение напряжения равно сумме обмоток повышающих и понижающих, считается, что полярность трансформатора дополнительная (аддитивная). В противном случае, если показания счетчика меньше приложенного напряжения, полярность является вычитаемой (субтрактивной).См. схему

Правило большого пальца для определения полярности полярности трансформатора (ANSI)

Другое эмпирическое правило для определения полярности трансформатора исходит из обозначений ANSI(Американский национальный институт стандартов). В соответствии с этими стандартами, если вы столкнетесь с низковольтной стороной однофазного трансформатора (сторона, обозначенная X1, X2), соединение H1 всегда будет находиться слева от вас.

Если вывод с пометкой X1 также находится слева, это субтрактивная полярность. Если вывод X1 находится справа от вас, это добавочная полярность.

Подумайте о полярности трансформатора с точки зрения направления тока. Всякий раз, когда ток протекает через обозначенную полярностью клемму на первичной обмотке, ток, выходящий из вторичной обмотки, будет перемещаться в одном направлении, выходя из вывода с одинаковой маркировкой полярности.

определение полярности трансформатора

Всегда, когда ток протекает через клемму с обозначенной полярностью на первичной обмотке, ток, выходящий из вторичной обмотки, будет перемещаться в одном направлении, выходя из вывода с одинаковой маркировкой полярности.

Аддитивная полярность,как правило , характерна для небольших распределительных трансформаторов. Мощные трансформаторы, в большинстве ,обладают субтрактивной полярностью.

Размещение выводов в трехфазном трансформаторе также стандартизировано. Высоковольтные выводы расположены H3, H2, H1 и H0 слева направо, когда обращены к трансформатору со стороны высокого напряжения (См.схему).

В трехфазных трансформаторах низковольтные выводы X0, X1, X2 и X3 расположены слева направо

со стороны низкого напряжения. Термины «аддитивная полярность» и «субтрактивная полярность» не распространяются на трехфазные трансформаторы.

Полярность трехфазного трансформатора

Размещение выводов в трехфазном трансформаторе стандартизировано. При обращении с трехфазными трансформаторами со стороны низкого напряжения низковольтные выводы расположены XO, X1, X2 и X3 слева направо. Высоковольтные выводы расположены H3, H2, H1 и HO слева направо, когда они обращены к трансформатору с высоковольтной стороны.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector