Aniks-lift.ru

Подъемное оборудование
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Определение предела текучести стали

Определение предела текучести стали

Прибор определения предела текучести

Современное производство нуждается в большом количестве прочных стальных изделий. При строительстве мостов, домов, сложных конструкций используют различные стали. Одним из главнейших вопросов является расчет прочности металла и значения величины напряжения стальной арматуры. Чтобы конструкции служили долго и были безопасны необходимо точно знать предел текучести стального материала, который подвергается основной нагрузке.

Как определить прочность стали


Гношова Ольга Юрьевна, генеральный директор компании «Юнирек»

Первое, на что стоит обратить внимание при выборе стеллажного оборудования — это марка стали, из которой оно будет изготовлено.

Друзья! Мы находимся в испытательной лаборатории Уральского научно-исследовательского института черных металлов ( ОАО «Уральский институт металлов»).

Испытательная лаборатория Уральского института металлов

Мы покажем вам, чем отличаются марки стали с точки зрения грузонесущей способности, способности сопротивляться стационарной и динамической нагрузке и за что, в конечном счете, платит покупатель стеллажей.

Марки стали отличаются по химическому составу и физическим свойствам. Нас интересует как деформируется сталь после воздействия на нее нагрузки.
Деформации разделяют на обратимые (упругие) и необратимые (пластические).

Приведем классический пример из жизни склада: погрузчик ударяет стойку стеллажа. Если стойка принимает свое изначальное положение, то это «деформация упругая», а если стойка не возвращается в свое проектное положение, принимает «форму погрузчика», то это называется «пластическая деформация».

Деформация стойки стеллажа после удара погрузчиком

Каждый сплав имеет предел или критический момент, после которого упругая деформация переходит в пластическую. Именно этот показатель – «предел текучести» стали, нас с вами интересует.

Стойки стеллажа из стали Ст20

Чем выше показатель предела текучести стали, тем дольше сталь способна находиться в напряженном состоянии и противостоять стационарным и динамическим нагрузкам.

Самыми популярными в России марками стали для производства стеллажей являются марки Ст08пс, Ст3пс, Ст3сп, Ст3кп, Ст350, S355МС.

По нашей просьбе, на заводе были изготовлены 4 образца стеллажных стоек. По два образца из стали марок S355MC и Ст3, толщиной 1,5 и 2,0 миллиметра.

Для наглядности их окрасили в разные цвета – сталь Ст3 в оранжевый, а сталь S355MC в синий цвет.

Образцы стали марок S355MC и Ст3, толщиной 1,5 и 2,0 миллиметра

Перед испытаниями в Лаборатории определили химический состав (марку стали) образцов при помощи фотоэлектрического спектрального анализа.

Ниже приведена таблица с ориентировочными показателями различных сталей, используемых при производстве стеллажных комплектующих в России (данные показатели могут отличаться в зависимости от партий проката и при разных условиях).

В Европе при производстве стеллажей используется только сталь с высоким пределом текучести, марки S52 (и других).

Показатели сталей, используемых при производстве стеллажей России

σ0,2 — предел текучести условный, МПа

sв — временное сопротивление разрыву (предел прочности при растяжении), МПа

sT — предел пропорциональности (предел текучести для остаточной деформации), МПа

d5 — относительное удлинение после разрыва, %

HB — твердость по Бринеллю

KCU — ударная вязкость, Дж/см2

Стационарная нагрузка

Итак, мы подвергли стационарной нагрузке (давлением пресса) две пары стоек.

Первая пара — из стали толщиной 1,5мм

Образец из стали Ст3 1,5мм

Образец из стали S355МС показал, что пределом его текучести является нагрузка в 109,8 кН, что соответствует 11200 кгс

образец из стали S355МС оказался на 16,7% устойчивее

  • Образец из стали Ст3 показал, что пределом его текучести является нагрузка в 94,14 кН, что соответствует 9600 кгс.
  • Образец из стали S355МС показал, что пределом его текучести является нагрузка в 109,8 кН, что соответствует 11200 кгс.

Видео показывает, что после наступления критического момента, даже после снижения нагрузки от пресса, образец продолжает деформироваться.

Данное поведение металла стоек следует принимать во внимание в процессе эксплуатации стеллажного оборудования. Необходимо помнить, что деформированная стойка выносит меньшую нагрузку, чем «целая», и поэтому ее нельзя подвергать прежней нагрузке.

Вторая пара из стали толщиной 2,0 мм

Образец из стали Ст3 2мм показал, что пределом его текучести является нагрузка в 127,5кН

Образец из стали S355МС 2мм показал, что пределом его текучести является нагрузка в 164,75 кН, что соответствует 16800 кгс

Образец из стали S355МС оказался на 29,5% устойчивее

  • Образец из стали Ст3 показал, что пределом его текучести является нагрузка в 127,5кН, что соответствует 13000 кгс.
  • Образец из стали S355МС показал, что пределом его текучести является нагрузка в 164,75 кН, что соответствует 16800 кгс.
Читайте так же:
Как удлинить трубку для монтажной пены

Кстати, европейский концерн «Mecalux» не использует для производства паллетных стеллажей сталь толщиной менее 1,8мм.

Для определения устойчивости стали разных марок к динамическим нагрузкам, были произведены испытания образцов по показателю «Предел прочности на растяжение».

Динамическая нагрузка Предел прочности на растяжение

Предел прочности на растяжение есть пороговая величина постоянного (для статического предела прочности) или, соответственно, переменного (для динамического предела прочности) механического напряжения, превышая который механическое напряжение в результате (за конечный достаточно короткий промежуток времени) разорвет тело из конкретного материала.

Нами были подготовлены два образца в виде металлических пластин из стали Ст3 и S355МС, которые поочередно подвергли растяжению

Образец из стали Ст3 показал, что пределом его прочности является нагрузка в 8,24кН, что соответствует 840 кгс

Образец из стали S355МС показал, что пределом его прочности является нагрузка в 10,2 кН, что соответствует 1040 кгс

  • Образец из стали Ст3 показал, что пределом его прочности является нагрузка в 8,24кН, что соответствует 840 кгс.
  • Образец из стали S355МС показал, что пределом его прочности является нагрузка в 10,2 кН, что соответствует 1040 кгс.

Таким образом, образец из стали S355МС оказался на 23,85% прочнее на растяжение, чем образец из стали Ст3.

Сегодняшними испытания мы хотели наглядно показать, что образцы из разных марок стали ведут себя по-разному после воздействия нагрузки.

Вы увидели, что образцы из S355MC стали держат гораздо большие стационарные и динамические нагрузки, чем образцы из стали Ст3.

Поэтому, при выборе стеллажного оборудования марка стали имеет значение!

Надеемся, что приведенная информация покажется Вам интересной и полезной.

ООО «Юнирек» проектирует и поставляет стеллажное оборудование уже более 8-ми лет, безаварийная служба поставленного оборудования обеспечена политикой компании – мы не идем на компромиссы в вопросах качества и безопасности.

Виды деформации стали

Предел текучести сталей

Тяжелым конструкциям необходимо придать дополнительную прочность и надежность, в связи с чем к свойствам используемых для изготовления металлов предъявляются особые требования.

При расчете размеров конструкции важную роль играет снижение массы сооружения без потери его несущих способностей. Используемые для изготовления металлических сооружений конструкционные металлы должны иметь достаточно высокие показатели прочности и хорошую пластичность.

Сопротивляемость деформации и разрушению под воздействием внешней нагрузки во многом зависит от того, какими свойствами наделен металл. В производстве стали деформация встречается в двух видах: упругой и пластической.

Описываются они разными характеристиками. Сегодня для испытания образцов металлов применяют несколько методик, которые определяют значения пропорциональности, упругости, текучести и других важных характеристик.

Современное определение стали звучит как твердый сплав железа с углеродом, процентным содержанием которого и обусловлены основные свойства стали. Чем выше содержание углерода, тем металл прочнее и тверже, но ниже вязкость и пластичность. Поэтому так важно правильно рассчитать соотношение этих показателей для производства тех или иных изделий из стали. Маркировать стали принято каждую группу по-разному.

Конструкционная углеродистая сталь маркируется буквами Ст и цифровыми обозначениями от 1 до 9, а также двумя буквами в зависимости от способа раскисления металла (ст.3кп):

  1. кп — кипящая;
  2. пс — полуспокойная;
  3. сп — спокойная.

Качественная — цифрами двузначными: 05,08,10,… 45…, что указывает на среднее количество углерода в составе стали.

Предел текучести стали

Предел прочности

Граничный предел пропорциональности стали определяет напряжение, при котором действует закон Гука, согласно с которым деформация, возникшая в упругом теле, пропорциональна приложенной к нему силе. Если напряжение меняется, этот закон теряет актуальность.

Немаловажной физической величиной, участвующей в формуле при расчете прочности конструкции, является предел текучести металла. Когда металлом достигается физический предел, даже самое малое поднятие напряжения способно удлинить образец, который начинает как бы течь, откуда и произошло его обозначение. В связи с этим граница текучести стали показывает критическое напряжение, когда материал деформируется уже без увеличения нагрузки.

Единица, в которой производится измерение предела текучести будет называться Паскаль (Па) либо МегаПаскаль (МПа). Преодолевший этот предел образец получает необратимые изменения — разные степени деформации, нарушение структурного строения кристаллической решетки, различные пластические преобразования.

Читайте так же:
Гибочные станки для проволоки

Если при увеличении растягивающего значения силы пройдена площадка текучести, деформация металла усиливается. На диаграмме это представляется в виде горизонтально расположенной прямой, на которой может измеряться напряжение, максимально получаемое после остановки усиления нагрузки. Так называемый предел текучести Ст 3 составляет 2450 кг/кв.см.

Этот показатель отличается у различных марок стали и может меняться от применения разных температурных режимов и типов термообработки. Чтобы иметь возможность точно определить предел текучести стали таблица используется, где в зависимости от марок сталей приведены величины пределов текучести. Как пример, по данным таблицы сталь 20 предел текучести имеет 250 МПа, а сталь 45 — 360.

При проведении испытаний некоторые металлы на диаграмме имеют слабо выраженную площадку тягучести либо она вовсе отсутствует, поэтому к ним применяется условный предел тягучести.

Материалы, на которые распространяется применение условного предела текучести, это в основном представители высокоуглеродистых и легированных сталей, дюралюминий, чугун, бронза и многие другие.

Предел упругости

Диаграмма растяжения с площадкой текучести

Весьма важной составляющей механического состояния металлов является предел упругости стали. С его помощью устанавливается предельно допустимый уровень нагрузок при эксплуатации металла, когда им испытываются незначительные деформации в допустимых значениях.

Конструкционные материалы в себе должны сочетать высокие пределы тягучести, при которых они смогут выдерживать серьезные нагрузки, и иметь достаточную упругость, которая обеспечит необходимую жесткость изготовляемой конструкции. Сам модуль упругости обладает одинаковой величиной при растяжении и сжатии, но иметь совершенно отличные пределы упругости — так что одинаково жесткие конструкции диапазоны упругости могут иметь абсолютно разные.

При этом металл в упругом состоянии макропластических деформаций не получает, хотя в его отдельных микроскопических объемах локальные деформации вполне могут иметь место. Благодаря им происходят неупругие явления, серьезно воздействующие на поведение отдельных металлов в состоянии упругости.

При этом нагрузки статические приводят к возникновению гистерезисных явлений, релаксации и упругого последействия, в то время как нагрузки динамические провоцируют появление внутреннего трения.

В процессе релаксации происходит несанкционированное снижение напряжения. Это приводит к проявлению остаточной деформации, когда активная нагрузка уже не действует. При наступлении внутреннего трения происходит потеря энергии. Это вызывает необратимые последствия, которые характеризуются декрементом затухания и коэффициентом внутреннего трения.

Такие металлы активно гасят вибрацию и сдерживают звук, например, серый чугун, или свободно распространяют колебания, как это делает колокольная бронза. С повышением температурного воздействия упругость металлов снижается.

Предел прочности

Диаграмма растяжения

Предел прочности стали, который возникает после прохождения его границы текучести и позволяет образцу вновь начать сопротивление к растяжению, отображается на графике линией, которая поднимается уже более полого.

Наступает фаза временного сопротивления действующей постоянной нагрузке. При применении максимума напряжения в точке предела прочности возникает участок, где площадь сечения уменьшается, а шейка значительно сужается.

При этом испытываемый образец разрывается в наиболее узком месте, его напряжение снижается и значение величины силы уменьшается. Предел прочности для ст. 3 составляет 4000−5000 кГ/кв.см.

Закон Гука

метод испытания на растяжение

Это – основной закон, устанавливающий зависимость между напряжениями и деформациями в упругом теле. Закон Гука справедлив для начальных деформаций, которые пропорциональны прикладываемым к телу напряжениям.

Для продольного растяжения критерием пропорциональности вышеуказанных физических величин является показатель упругости, который называется модулем Юнга. Для подавляющего большинства конструкционных материалов модуль Юнга – постоянная величина, характеризующая жёсткость.

В более точных расчётах иногда принимают во внимание температурную зависимость константы упругости, которая, однако, проявляет себя лишь при температурах от 88 К.

Закон Гука справедлив лишь при напряжениях и деформациях, которые не превышают пределов, свойственных данному материалу. На применении этого закона основаны все вычисления, принятые в сопротивлении материалов.

Читайте так же:
Как пилить бетон болгаркой

Параметры и применение

Существует условное разделение крепежных изделий, которое зависит от их назначения. Обеспечить нужные параметры конструкции можно, следуя рекомендациям:

  • Малонагруженные соединения. Используются элементы с классом прочности 4.8 или 5.8. Продукция изготавливается из конструкционной углеродистой стали. Обычно это марки 10 или 20.
  • Ключевые соединения с повышенной нагрузкой. Используются изделия с маркировкой 8.8. Это стандартное решение для ответственных нагруженных креплений. В производстве изделий применяется закаленная сталь марок 35 или 20Г2Р.
  • Габаритные конструкции. В этом случае производители рекомендуют крепеж класса прочности 10,9, возможно 12,9. Благодаря максимальным показателям, соединения выполняются в объектах, предназначенных для многократных циклов сборки/разборки. В производстве продукции этого класса применяется легированная сталь марок марки 40Х и ли20Г2Р.

Важно! Перед выбором класса крепежа для любого инженерного проекта необходимо узнать расчетную нагрузку. Это позволит предоставить консультанту необходимые данные, и купить крепежные изделия, отвечающие текущим задачам.

Методы определения прочности материала конструкции

Проведение статических испытаний на прочность – это тестирование шаблонных образцов определенной формы. По результатам экспериментов специалисты рисуют диаграмму, на которой можно наглядно увидеть, как деформируется материал под напряжением. Графические данные помогают оценить предел упругости и текучести, временное сопротивление. Для определения параметров определенного материала проводят специальные расчеты для вычисления усталостной нагрузки и предельного напряжения.

Методы определения прочности материала зависят его разновидности и типа строительной конструкции. Например, стандартный способ оценки характеристик кирпича – испытание на сжатие двух целых кирпичей, которые сложены друг на друга. Для исследования силикатного кирпича используют ультразвуковую методику.

Все способы исследования можно разделить на две большие группы – разрушающего и неразрушающего контроля. Они применимы к отдельным строительным конструкциям, образцам и отдельным элементам.

Определение прочности материала

При возможности специалисты стараются отдавать предпочтение методам неразрушающего контроля, которые не требуют демонтажа и разбора конструкции. Несмотря на то, что образцы проб отбирают из наименее важных функциональных элементов, стандартные методы испытания прочности отражаются на устойчивости и надежности здания. Но не всегда и не у всех строительных изделий возможно оценить прочность методами неразрушающего контроля.

Методы разрушающего контроля

Отличительная особенность данного типа исследования – проведение испытаний на контрольных образцах до их полного разрушения. Например, кирпич могут сжимать или воздействовать извне иным способом до тех пор, пока он не даст трещину или не посыплется. Для этого из конструкции извлекают часть материала и отправляют в лабораторию для оценки прочностных характеристик.

Для определения участка отбора проб учитывают доступность образца, степень нагруженности, и поврежденности, интенсивность эксплуатации строительной конструкции.Методы разрушающего контроля позволяют с минимальной погрешностью вычислить физические свойства образца. Но они требуют серьезных трудозатрат. Главный недостаток исследования методом разрушающего контроля – необходимость нарушать целостность здания. Это не всегда возможно, поэтому специалисты стараются оценивать характеристики строительных материалов методом неразрушающего контроля.

Методы неразрушающего контроля

Исследование неразрушающими методами активно используется при технической экспертизе жилых, промышленных, административных зданий и построек, объектов исторического и культурного наследия. Они могут быть основаны на различных технологиях:

  • механической: метод упругого отскока, исследование пластических деформаций и ударный импульс часто используют для экспертизы бетона;
  • радиационной: методы базируются на применении радиоизотопов и нейтронов;
  • магнитной: методы магнитопорошковой и индукционной оценки;
  • акустической: исследование путем воздействия ультразвука, оценка эффектов акустоэмиссии;
  • радиоволновой: исследование распределения в материале волн разной длины;
  • электрической: определение характеристик через вычисление электросопротивления, электроиндуктивности и электроемкости строительного материала.

ДЕПАРТАМЕНТ

С помощью современных приборов и технологии можно определить прочностные характеристики изделия без конструктивных изменений и сохранить первоначальные физико-механические параметры материалы.

Показатели прочности и пластичности материала

Прочность — это способность материала сопротивляться пластической деформации.

Читайте так же:
Асинхронный электродвигатель схема подключения 220в

Показатели прочности:

1. Предел пропорциональности — это напряжение, ниже которого соблюдается прямая пропорциональная зависимость между напряжением и относительной деформацией:

,

где Рпц — нагрузка при пределе пропорциональности.

2. Предел упругости s0,05 — это условное напряжение, при котором остаточная деформация составляет 0,05% расчетной длины. Ввиду малости величины остаточной деформации на пределе упругости его иногда принимают равным пределу пропорциональности.

3. Предел текучести физический — это наименьшее напряжение при котором образец деформируется без увеличения растягивающей нагрузки:

,

Если на кривой деформации отсутствует четко выраженная площадка текучести (рис. 7, а), то определяют предел текучести условный.

4. Условный предел текучести s0,2 — это напряжение, при котором остаточное удлинение достигает 0,2% длины участка образца на его рабочей части, удлинение которого принимается в расчет при определении указанной характеристики:

,

5. Сопротивление значительным пластическим деформациям (для пластичных материалов) характеризуется пределом прочности.

Предел прочности (временное сопротивление) sВ — это условное напряжение, соответствующее наибольшей нагрузке РМАХ, предшествовавшей разрыву образца:

.

Пластичность — это способность материала проявлять, не разрушаясь, остаточную деформацию.

Показатели пластичности:

1. Относительное удлинение после разрыва d — это отношение приращения расчетной длины образца (lKl) после разрушения (рис. 8) к начальной расчетной длине l, выраженное в процентах:

Для определения длины расчетной части lK после разрыва части образца плотно прикладывают друг к другу (рис. 8) и измеряют расстояние между метками, которые ограничивали начальную расчета длину.

Относительное сужение y — это отношение абсолютного уменьшения площади поперечного сечения в шейке образца (FFK) к начальной площади сечения F выраженное в процентах:

где F и FK — площади поперечного сечения образца до и после испытания соответственно.

Способы определения твердости материалов.

Твердость — способность материала сопротивляться упругой и пластической деформации при внедрении в него более твердого тела (индентора).

Определение твердости по методу Роквелла

При измерении твердости по Роквеллу индентор — алмазный конус с углом при вершине 120° (ГОСТ 9013-59) и радиусом закругления 0,2 мм или стальной шарик диаметром 1,5875 мм (1/16 дюйма) — вдавливается в образец под действием двух последовательно прилагаемых нагрузок: предварительной Р и общей Р = Р + Р1, где Р1 — основная нагрузка.

Схема измерения твердости по Роквеллу

Сначала индентор вдавливается в поверхность образца под предварительной нагрузкой Р = 100 Н, которая не снимается до конца испытания, что позволяет повысить точность испытаний, т.к. исключает влияние вибраций и тонкого поверхностного слоя. Под нагрузкой Р индентор погружается в образец на глубину h. Затем на образец подается полная нагрузка Р = Р + Р1, глубина вдавливания увеличивается. Последняя после снятия основной нагрузки Р1 (на индентор вновь действует только предварительная нагрузка Р) определяет число твердости по Роквеллу (HR). Чем больше глубина вдавливания h, тем меньше число твердости HR.

Твердомер Роквелла автоматически показывает значения числа твердости в условных единицах по одной из трех шкал — А, В и С и соответственно они обозначаются как HRA, HRB и HRC. Выбор шкалы производится по предварительно известной твердости материала по Бринеллю из табл.3. Если сведений о твердости материала образца нет, то после ориентировочных замеров необходимо обратиться к табл.5 и затем произвести окончательные замеры твердости.

Примерная твердость по БринеллюШкала РоквеллаТип индентораОбщая нагрузкаДопускаемые величины твердости по шкале
Нкгс
Менее 228Шкала В (красная)стальной шарик25-100
229-682Шкала С (черная)алмазный конус22-68
363-720Шкала А (черная)алмазный конус70-85

Существенное значение имеет толщина испытуемого образца. После замера твердости на обратной стороне образца не должно быть следов отпечатка.

Во всех случаях измерений значение предварительной нагрузки постоянно и равно Р = 100 Н.

Читайте так же:
Какой кабель использовать для точечных светильников

Число твердости выражается формулами:

, (3)

, (4)

где (0,002 — цена деления шкалы индикатора твердомера Роквелла).

Таким образом, единица твердости по Роквеллу безразмерная величина, соответствующая осевому перемещению индентора на 0,002 мм.

Существует несколько типов приборов для измерения твердости по Роквеллу, но принципиальные схемы их работы аналогичны.

Определение твердости по методу Виккерса

При стандартном измерении твердости по Виккерсу (ГОСТ 2999-75) в поверхность образца вдавливается алмазный индентор в форме четырехгранной пирамиды с углом при вершине a»136°. После удаления нагрузки P (10¸1000 Н), действовавшей определенное время (10-15 с), измеряют диагональ отпечатка d, оставшегося на поверхности образца.

Число твердости HV определяют по формуле:

(5)

где Р — нагрузка в кгс, d — длина диагонали отпечатка в мм.

Число твердости записывается без единиц измерения, например 230 HV. Если число твердости выражают в МПа, то после него указывают единицу измерения, например HV = 3200 МПа.

Относительно небольшие нагрузки и малая глубина вдавливания индентора обуславливают необходимость более тщательной подготовки поверхности, чем при измерении твердости по Бринеллю. Образцы, как правило, полируют, с поверхности снимается наклеп.

Измерения осуществляют на приборах марки ТП. Прибор смонтирован на станине 1. Образец помещают на опорный столик 5. Нагрузка прилагается к индентору 6 через установленный на призмах рычаг. Рычаг с подвеской 14 без сменных грузов 15 обеспечивает минимальную нагрузку 50 Н.

Схема прибора ТП для определения твердости по Виккерсу:

1 — станина; 2 — педаль грузового привода; 3 — маховичок; 4 — винт подъемный; 5 — столик опорный; 6 — индентор; 7 — рукоятка; 8 — шпин-дель; 9 — шпиндель промежуточный; 10 — микроскоп измерительный; 11 — призма; 12 — рычаг; 13 — штырь; 14 — подвеска; 15 — грузы сменные; 16 — шпиндель пустотелый; 17 — ры-чаг ломанный; 18 — винт регулиро-вочный; 19 — амортизатор масляный; 20 — груз; 21 и 22 — рычаги; 23 — руко-ятка.

После установки образца на столик 5 совмещают перекрестие окуляра микроскопа 10 с тем местом на образце, твердость которого необходимо измерить. Наводят на резкость, устанавливают индентор над образцом, включают механизм грузового привода. Пока образец находится под нагрузкой, горит сигнальная лампочка, расположенная в верхней части передней панели твердомера.

После снятия нагрузки поворотную головку переводят в такое положение, чтобы полученный отпечаток вновь был виден в микроскоп. Затем с помощью барабанчика окуляр-микрометра замеряют длину диагонали отпечатка.

Физический смысл числа твердости по Виккерсу аналогичен НВ, величина HV тоже является усредненным условным напряжением в зоне контакта индентор — образец и характеризует обычно сопротивление материала значительной пластической деформации.

Числа HV и НВ близки по абсолютной величине только до 400-450 НV. Выше этих значений метод Бринелля дает искаженные результаты из-за остаточной деформации стального шарика. Алмазная же пирамида в методе Виккерса позволяет определять твердость практически любых металлических материалов. Еще более важное достоинство этого метода — геометрическое подобие отпечатков при любых нагрузках, поэтому возможно строгое количественное сопоставление чисел твердости НV любых материалов, испытанных при различных нагрузках.

Хрупкое и вязкое разрушение материала.

При хрупком разрушении макропластическая деформация отсутствует. В металле возникает только упругая деформация. Разрушение происходит путем отрыва или скола, когда плоскость разрушения перпендикулярна действующим напряжениям. Разрушение начинается от дефекта (микротрещины), вблизи которого концентрируются напряжения, превосходящие теоретическую прочность металла.

При вязком разрушении металл претерпевает значительную пластическую деформацию. У пластичных материалов, благодаря релаксации напряжений, их концентрация вблизи несплошностей оказывается недостаточной и развитие трещин скола (т.е. хрупких) не происходит. Вязкое разрушение происходит путем сдвига.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector