Aniks-lift.ru

Подъемное оборудование
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Please select your page

Ковкий чугун

Отливки из ковкого чугуна

Ковкий чугун (malleable iron castings) получают графитизирующим отжигом белого чугуна определенного химического состава, что обеспечивает формирование в процессе отжига компактного графита, который придает ковкому чугуну повышенные механические свойства (предел прочности при растяжении σB, относительное удлинение δ и ударная вязкость αH).

Рекомендуемый химический состав ковкого чугуна характеризуется пониженным содержанием графитизирующих элементов C=2,4-2,9%; Si=1,0-1,6%; C+Si=3,6-4,2%, что обусловлено необходимостью получения отливок из ковкого чугуна в литом состоянии со 100% отбелом по всему сечению отливки, по той простой причине, что при наличии в литой структуре чугуна пластинчатого графита, в процессе последующего проведения отжига будет формироваться пластинчатый графит (т.е. серый чугун), а не компактный, присущий ковкому чугуну.

Принято различать черносердечный ковкий чугун, получаемый графитизирующим отжигом (технология используемая в Украине) и белосердечный ковкий чугун, получаемый обезуглероживающим отжигом в окислительной среде (обычно отливки располагают в контейнерах в перемешку с железной рудой, t=1000-1050°C, τ=60-70 ч). Тонкостенные отливки из белосердечного ковкого чугуна производят во Франции, Германии, Италии и др. странах, основные достоинства такого чугуна — повышенная вязкость и пригодность для проведения сварки без предварительной и последующей термической обработки.

Термическая обработка

Графитизирующий отжиг является неотъемлемой технологической операцией процесса получения ковкого чугуна. Основное назначение — проведение графитизации, т.е. выделения графита из цементита, при этом протекание процесса возможно по 2-м вариантам: полная графитизация цементита, с получением ферритной металлической матрицы и частичная графитизация первичного и ледебуритного цементита, с получением перлитной или перлито-ферритной металлической матрицы.

Независимо от выбранного варианта, графитизирующий отжиг проводят в две стадии:

Схема графитизирующего отжига ковкого чугуна

Рис. 1: Схема графитизирующего отжига ковкого чугуна

  1. стадия предусматривает: нагрев до температуры 930-1050°C со скоростью 200-300°C/ч; выдержку в течение

10 ч. На данной стадии происходит разложение первичного и ледебуритного цементита, в результате чего образуется аустенитная матрица с включениями хлопьевидного (компактного) графита (см. рис. 1). Затем следует снижение температуры до

700°C. На данной стадии происходит распад цементита, входящего в перлит. Окончательная микроструктура чугуна зависит от параметров второй стадии: кратковременная выдержка (

Основной недостаток техпроцесса получения ковкого чугуна — длительный процесс термической обработки, что при нынешних высоких ценах на электроэнергию, ведет к значительным затратам. Для снижения длительности отжига ковкий чугун подвергают модифицированию и микролегированию алюминием (0,01%), бором (0,003%), титаном (0,03%), висмутом (0,003%), что ведет к увеличению в расплаве центров графитизации и снижению стабильности цементита.

Достоинства ковкого чугуна:

  1. Сочетание высоких механических свойств с высокой обрабатываемостью резанием (компактный графит способствует ломкости стружки и является смазывающим материалом)
  2. Однородная структура по всему сечению отливки
  3. Отсутствие внутренних напряжений в отливках
  4. Способность воспринимать высокие знакопеременные нагрузки
  5. Высокая коррозионная стойкость

Ковкий чугун используют для производства мелких тонкостенных отливок (3-50 мм) ответственного назначения, работающих в условиях динамических знакопеременных нагрузок в автомобилестроении, тракторном и сельскохозяйственном машиностроении для изготовления коробок передач, деталей приводных механизмов, шасси, рычагов, коленчатых и распределительных валов, деталей сцепления, поршни дизельных двигателей, коромысла клапанов, фитинги и т.д.

Стандарты

Технические характеристики ковкого чугуна для изготовления отливок, в Украине регламентируется ГОСТ 1215-79 «Отливки из ковкого чугуна. Общие технические условия».

Маркировка

Ковкий чугун маркируют буквами КЧ, за которыми следуют две цифры, отображающие предел прочности при растяжении σB (в кгс/мм 2 ), а за ними, через дефиз, следует одна или две цифры, отображающие относительное удлинение δ (в %), через дефиз заканчивают маркировку буквы Ф или П, отобраражающие класс чугуна ферритный или перлитный. К примеру, КЧ 37-12-Ф означает — ковкий чугун ферритного класса с пределом прочности на растяжение не ниже — 37 кг/мм 2 и относительным удлинением не ниже — 12%.

Читайте так же:
Как заправляться на газовой заправке

Классификация ковкого чугуна

В зависимости от микроструктуры металлической матрицы ковкий чугун подразделяют на ферритный (Ф) и перлитный (П):

  • Ковкий чугун ферритного класса с ферритной или феррито-перлитной микроструктурой металлической матрицы, производят следующих марок: КЧ 30-6, КЧ 33-8, КЧ 35-10, КЧ 37-12
  • Ковкий чугун перлитного класса с перлитной микроструктурой металлической матрицы, производят следующих марок: КЧ 45-7, КЧ 50-5, КЧ 55-4, КЧ 60-3, КЧ 65-3, КЧ 70-2, КЧ 80-1,5

Механические свойства

Механические свойства материала отливок из ковкого чугуна ферритного и перлитного классов должны удовлетворять требованиям ГОСТ 1215-79, приведенным в табл. 1.

Таблица 1: Механические свойства ковкого чугуна по ГОСТ 1215-79

МаркаВременное сопротивление
разрыву, МПа, (кгс/мм 2 )
Относительное
удлинение, %
Твердость по
Бринеллю, НВ
не менее
КЧ 30-6294 (30)6100-163
КЧ 33-8323 (33)8100-163
КЧ 35-10333 (35)10100-163
КЧ 37-12362 (37)12110-163
КЧ 45-7441 (45)7*150-207
КЧ 50-5490 (50)5*170-230
КЧ 55-4539 (55)4*192-241
КЧ 60-3588 (60)3200-269
КЧ 65-3637 (65)3212-269
КЧ 70-2686 (70)2241-285
КЧ 80-1,5784 (80)1,5270-320

Примечание: * По согласованию изготовителя с потребителем допускается понижение на 1%.

Химический состав

Рекомендуемый химический состав ковкого чугуна согласно ГОСТ 1215-79, приведен в табл. 2.

Содержание

Мировое производство чугуна в 2009 составило 898,261 млн тонн, что на 3,2% ниже, чем в 2008 году (927,123 млн т) [1] . Мировая топ-десятка стран–производителей чугуна выглядит следующим образом:

1Китай543,748 млн т
2Япония66,943 млн т
3Россия43,945 млн т
4Индия29,646 млн т
5Южная Корея27,278 млн т
6Украина25,676 млн т
7Бразилия25,267 млн т
8Германия20,154 млн т
9США18,936 млн т
10Франция8,105 млн т

За четыре месяца 2010 года мировой выпуск чугуна составил 346,15 млн тонн. Этот результат на 28,51% больше по сравнению с аналогичным периодом 2009 года. [2]

СОДЕРЖАНИЕ

Чугун производится из чугуна , который является продуктом плавки железной руды в доменной печи . Чугун можно производить непосредственно из расплавленного чугуна или путем переплавки чугуна , часто вместе со значительными количествами железа, стали, известняка, углерода (кокса) и принятия различных мер для удаления нежелательных загрязняющих веществ. Фосфор и сера могут выгореть из расплавленного железа, но при этом также выгорает углерод, который необходимо заменить. В зависимости от области применения содержание углерода и кремния регулируется до желаемых уровней, которые могут составлять от 2–3,5% и 1–3% соответственно. При желании в расплав затем добавляют другие элементы до того, как литьем будет получена окончательная форма .

Чугун иногда плавят в доменной печи особого типа, известной как вагранка , но в современных приложениях его чаще плавят в индукционных или электродуговых печах. По окончании плавки расплавленный чугун заливают в раздаточную печь или ковш.

Легирующие элементы

Свойства чугуна изменяются за счет добавления различных легирующих элементов или легирующих добавок . Рядом с углеродом , кремний является наиболее важной легирующей добавкой , поскольку она заставляет углерод из раствора. Низкий процент кремния позволяет углероду оставаться в растворе, образуя карбид железа и производя белый чугун. Высокий процент кремния вытесняет углерод из раствора с образованием графита и производства серого чугуна. Другие легирующие агенты, марганец , хром , молибден , титан и ванадий, противодействуют кремнию, способствуют удерживанию углерода и образованию этих карбидов. Никель и медь увеличивают прочность и обрабатываемость, но не изменяют количество образующегося графита. Углерод в форме графита делает чугун более мягким, уменьшает усадку, снижает прочность и снижает плотность. Сера , если она присутствует в основном в качестве загрязнителя, образует сульфид железа , который предотвращает образование графита и увеличивает твердость . Проблема с серой в том, что она делает расплавленный чугун вязким, что вызывает дефекты. Чтобы противодействовать воздействию серы, добавляют марганец, потому что они превращаются в сульфид марганца, а не в сульфид железа. Сульфид марганца легче расплава, поэтому он имеет тенденцию всплывать из расплава в шлак . Количество марганца, необходимое для нейтрализации серы, составляет 1,7 × содержание серы + 0,3%. Если добавить больше этого количества марганца, то образуется карбид марганца , который увеличивает твердость и охлаждение , за исключением серого чугуна, где до 1% марганца увеличивает прочность и плотность.

Никель является одним из наиболее распространенных легирующих элементов, поскольку он улучшает структуру перлита и графита, улучшает ударную вязкость и выравнивает разницу в твердости между толщиной сечения. Хром добавляется в небольших количествах для уменьшения содержания свободного графита, получения холода и потому, что он является мощным стабилизатором карбида ; никель часто добавляют вместе. Можно добавить небольшое количество олова вместо 0,5% хрома. Медь добавляется в ковш или в печь в количестве порядка 0,5–2,5% для уменьшения холода, очистки графита и увеличения текучести. Молибден добавляется порядка 0,3–1% для увеличения охлаждения и улучшения структуры графита и перлита; его часто добавляют в сочетании с никелем, медью и хромом для образования высокопрочных чугунов. Титан добавляется в качестве дегазатора и раскислителя, но он также увеличивает текучесть. 0,15–0,5% ванадия добавляют в чугун для стабилизации цементита, увеличения твердости и повышения сопротивления износу и нагреванию. Цирконий 0,1–0,3% способствует образованию графита, раскислению и увеличению текучести.

В расплавы ковкого чугуна добавляется висмут в количестве 0,002–0,01%, чтобы увеличить количество кремния, которое можно добавить. В белое железо бор добавляется для облегчения производства ковкого чугуна; он также снижает эффект огрубления висмута.

Серый чугун

Серый чугун характеризуется своей графитовой микроструктурой, из-за которой изломы материала приобретают серый цвет. Это наиболее часто используемый чугун и наиболее широко используемый литой материал в зависимости от веса. Большинство чугунов имеют химический состав 2,5–4,0% углерода, 1–3% кремния и остальное железо. Серый чугун имеет меньшую прочность на растяжение и ударопрочность, чем сталь, но его прочность на сжатие сопоставима с низко- и среднеуглеродистой сталью. Эти механические свойства регулируются размером и формой чешуек графита, присутствующих в микроструктуре, и могут быть охарактеризованы в соответствии с рекомендациями ASTM .

Белый чугун

Белый чугун имеет белые изломы из-за наличия осадка карбида железа, называемого цементитом. При более низком содержании кремния (графитирующего агента) и более высокой скорости охлаждения углерод в белом чугуне выделяется из расплава в виде цементита метастабильной фазы , Fe 3 C, а не графита. Цементит, выпадающий в осадок из расплава, образует относительно крупные частицы. Когда карбид железа выпадает в осадок, он отводит углерод из исходного расплава, перемещая смесь в сторону более близкой к эвтектике, а оставшаяся фаза представляет собой аустенит с более низким содержанием железа и углерода (который при охлаждении может превратиться в мартенсит ). Эти эвтектические карбиды слишком велики, чтобы обеспечить преимущество так называемого дисперсионного твердения (как в некоторых сталях, где гораздо более мелкие выделения цементита могут препятствовать [пластической деформации], препятствуя движению дислокаций через матрицу чистого феррита железа). Скорее, они увеличивают объемную твердость чугуна просто за счет своей очень высокой твердости и значительной объемной доли, так что объемная твердость может быть аппроксимирована правилом смесей. В любом случае они предлагают твердость за счет прочности . Поскольку карбид составляет значительную часть материала, белый чугун с полным основанием можно отнести к кермету . Белый чугун слишком хрупок для использования во многих конструктивных элементах, но, обладая хорошей твердостью и устойчивостью к истиранию, а также относительно невысокой стоимостью, он находит применение в таких областях применения, как износостойкие поверхности ( рабочее колесо и спиральная камера ) шламовых насосов , гильзы корпуса и подъемные штанги в шаре. мельницы и мельницы автогенного помола , шары и кольца в измельчителях угля , а также зубья ковша экскаватора (хотя для этого применения более распространена литая среднеуглеродистая мартенситная сталь).

Трудно достаточно быстро охладить толстые отливки, чтобы расплав полностью застыл в виде белого чугуна. Тем не менее, быстрое охлаждение может использоваться для затвердевания оболочки из белого чугуна, после чего остаток охлаждается медленнее, образуя сердцевину из серого чугуна. Полученная отливка, называемая охлажденной отливкой , имеет преимущества твердой поверхности с несколько более жесткой внутренней частью.

Сплавы белого чугуна с высоким содержанием хрома позволяют отливать массивные отливки (например, 10-тонную крыльчатку) в песчаные формы, поскольку хром снижает скорость охлаждения, необходимую для производства карбидов из материала большей толщины. Хром также производит карбиды с впечатляющей стойкостью к истиранию. Эти высокохромистые сплавы объясняют свою превосходную твердость присутствием карбидов хрома. Основной формой этих карбидов являются эвтектические или первичные карбиды M 7 C 3 , где «M» представляет железо или хром и может варьироваться в зависимости от состава сплава. Эвтектические карбиды образуются в виде пучков полых гексагональных стержней и растут перпендикулярно гексагональной базисной плоскости. Твердость этих карбидов находится в пределах 1500-1800HV.

Ковкий чугун

Ковкий чугун представляет собой отливку из белого чугуна, которую затем подвергают термообработке в течение дня или двух при температуре около 950 ° C (1740 ° F), а затем охлаждают в течение дня или двух. В результате углерод в карбиде железа превращается в графит и феррит плюс углерод (аустенит). Медленный процесс позволяет поверхностному натяжению формировать графит в виде сфероидальных частиц, а не хлопьев. Из-за их более низкого соотношения сторон сфероиды относительно короткие и далеко друг от друга, и имеют меньшее поперечное сечение по сравнению с распространяющейся трещиной или фононом . У них также есть тупые границы, в отличие от чешуек, что устраняет проблемы концентрации напряжений, обнаруживаемые в сером чугуне. В целом ковкий чугун по своим свойствам больше похож на низкоуглеродистую сталь . Существует предел того, насколько большая деталь может быть отлита из ковкого чугуна, поскольку она сделана из белого чугуна.

Ковкий чугун

Разработанный в 1948 году чугун с шаровидным графитом или высокопрочный чугун имеет графит в виде очень крошечных конкреций, а графит — в виде концентрических слоев, образующих конкреции. В результате свойства высокопрочного чугуна аналогичны свойствам губчатой ​​стали без эффектов концентрации напряжений, которые могли бы вызвать чешуйки графита. Процент углерода присутствует в 3-4% , а процентное содержание кремния составляет 1.8-2.8% .Tiny составляет от 0,02 до 0,1% магния , и только от 0,02 до 0,04% церия добавляют к этим сплавам замедлить рост графита преципитатов путем приклеивания к краям графитовых плоскостей. Наряду с тщательным контролем других элементов и времени, это позволяет углю отделяться в виде сфероидальных частиц по мере затвердевания материала. Свойства аналогичны ковкому чугуну, но можно отливать детали с большим сечением.

Приложения

Большая часть годового производства высокопрочного чугуна приходится на труба из ковкого чугуна, используется для водопровода и канализации. Он конкурирует с полимерный материалы, такие как ПВХ, HDPE, LDPE и полипропилен, которые все намного легче стали или ковкого чугуна; будучи более мягкими и слабыми, они требуют защиты от физических повреждений.

Ковкий чугун особенно полезен во многих автомобильных компонентах, где прочность должна превосходить прочность алюминия, но сталь не обязательно требуется. Другие основные промышленные применения включают внедорожные дизельные грузовики, грузовые автомобили класса 8, сельскохозяйственные тракторы и насосы для нефтяных скважин. В ветроэнергетике чугун с шаровидным графитом используется для изготовления ступиц и конструктивных элементов, таких как рамы машин. Чугун с шаровидным графитом подходит для больших и сложных форм и высоких (усталостных) нагрузок.

SG-железо используется во многих арфах роялей (железных пластинах, к которым прикреплены струны высокого напряжения).

Механические свойства металла

Механические свойства КЧ зависят от суммарной доли включённого в его химический состав углерода и отжига. Для получения высококачественного сплава нужно выбирать чугунные отливки с низким содержанием углерода от 2,4 до 2,7%. Показатель твёрдости имеет прямую зависимость от состава, значение прочности и пластичности – от количества графита. В отличие от материала с шарообразным графитом, большую роль играет не только форма, но и число графитовых зёрен.

Согласно этому максимальной прочности можно достичь при получении дисперсного перлита с малым числом компактного графита, а наивысшей пластичности – при получении феррита с таким же объёмом графита. Показатель обрабатываемости ковкого сплава приближен к высокопрочному чугуну.

Ковкий чугун нормально эксплуатируется в низких температурных режимах, но по сравнению с серым сплавом обладает высоким показателем хрупкости. Температурное воздействие на химические свойства ковкого сплава проявляется в основном при отметке свыше 400 градусов в снижении пределов упругости и текучести, а также в увеличении показателя относительного удлинения после разрыва.

Порог хрупкости феррита существенно ниже, чем в случае с перлитом. При отсутствии дефектов литья, отливки из ковкого сплава являются герметичными в условиях сдавливания свыше 20 МПа. Перлитный ковкий чугун обладает высокой износостойкостью во время эксплуатации со смазочным материалом при давлениях до 20 МПа и быстро изнашивается от трения без смазки.

Технология получения чугуна

Получение чугуна — очень материалоемкий процесс, требующий серьезных затрат. На получение одной тонны сплава уходит около 550 килограмм кокса и 900 литров воды. Затраты руды зависят от содержания в ней железа. Обычно используется сырье с массовой долей элемента не менее 70%, так как обработка более бедных руд экономически неоправданна. Такое сырье сначала проходит процедуру обогащения, а уже потом отправляется на переплавку. Производство чугуна проходит в доменных печах. Лишь около 2% от всего производимого в мире материала выплавляется в электропечи.

Получение чугуна

Технологический процесс состоит из нескольких взаимосвязанных этапов. На первом этапе в доменную печь загружают руду, которая содержит так называемый магнитный железняк (соединение двухвалентного и трехвалентного оксидов железа). Также в качестве сырья могут использоваться руды с содержанием водной окиси железа или его солей. Вместе с сырьем в печь загружают коксующиеся угли, которые предназначены для создания и поддержания высокой температуры. Кроме того продукты их горения принимают участие в химических реакциях в качестве восстановителей железа.

Дополнительно в топку подает флюс, который выступает в качестве катализатора и помогает породам быстрее плавиться, освобождаю тем самым железо. Стоит отметить, что перед попаданием в доменную печь руда проходит специальную предварительную обработку. Они измельчается при помощи дробильной установки, так как мелкие частицы быстрее расплавятся. Затем ее промывают, чтобы удалить все лишние элементы, которые не содержать металла. После этого высушенное сырье проходит обжиг в специальных печах, который позволяет удалить из соединений серу и другие чужеродные элементы.

Чугунная посуда

Когда доменная печь загружена и готова к эксплуатации начинается второй этап производства. После запуска горелок кокс начинает разогревать сырье, выделяя при этом углерод, который, проходя через воздух, реагирует с кислородом и образует оксид. Этот оксид активно участвует в восстановлении железа из соединений, находящихся в руде. При этом, чем больше газа становится в печи, тем слабее протекает химическая реакция. После достижения определенной пропорции она им вовсе прекращается. Избыток газов используется как топливо для поддержания температуры в печи. Такой подход имеет несколько положительных моментов. Во-первых, снижаются затраты ископаемого горючего, что несколько удешевляет производство продукции. А, во-вторых, продукты горения не выбрасываются в атмосферу, загрязняя ее вредными примесями, а продолжают свое участие в технологическом процессе.

Чугунные изделия

Избыток углерода смешивается с расплавом и, поглощаясь железом, образует чугун. Все не расплавившиеся элементы породы всплывают на поверхность и удаляются из материала. Отходы называют шлаком, который затем пойдет на производство других материалов. После удаления всех лишних частиц в расплав при необходимости добавляют разнообразные присадки. Таким способом получают два вида сплавов: передельный и литейный чугун.

Области применения

В связи с современной тенденцией максимального облегчения оборудования, чугун используют все меньше.

Применение чугуна

Но есть области, где он пока незаменим и рентабелен:

В машиностроении применяется для крупных корпусных деталей с незначительными нагрузками на растяжение. Станины для станкового оборудования, блоки цилиндров для двигателей внутреннего сгорания. Маховики, шкивы, шестерни, гидроцилиндры, корпуса редукторов, электродвигателей, поршни.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector