Aniks-lift.ru

Подъемное оборудование
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Из чего состоят генераторы переменного тока и как они работают

Из чего состоят генераторы переменного тока и как они работают

Генераторы переменного тока

Человечество уже больше века использует электричество во всех сферах деятельности. Без него просто невозможно представить себе нормальной жизни. С помощью специальных машин механическая энергия преобразуется в переменный или постоянный ток. Чтобы лучше понять, как это происходит, необходимо разобраться, из чего состоит генератор и как он работает.

Синхронный генератор. Устройство генератора и принцип действия

  • Синхронный генератор. Устройство генератора и принцип действия
  • Область применения
  • Описание прибора
  • Принцип работы агрегата
  • Трехфазное устройство
  • Структуры возбуждения
  • Разновидности агрегатов
  • Принцип действия синхронного трёхфазного генератора

Синхронный генератор – машина (механизм) переменного тока, которая преобразовывает определенный тип энергии в электроэнергию.

К таким устройствам относят электростатические машины, гальванические элементы, солнечные батареи, термобатареи и т. п. Использование каждого вида из перечисленных приборов определяется их техническими характеристиками.

Устройство генераторной установки

Конструктивно устройство генераторного узла автомобиля для всех машин одинаково. Различия могут состоять в габаритах, расположении сочлененных деталей или в качестве изготовления.

Генераторный узел состоит из нескольких частей:

  1. Шкив, передающий через приводной ремень вращение двигателя на вал генератора.
  2. Крышки корпуса – передняя (сторона шкива) и задняя (сторона контактных колец).
  3. Ротор представляет собой стальной вал с двумя втулками, между которыми расположена обмотка с выводами и контактными кольцами.
  4. Статор выполняется как труба, набранная из стальных листов.
  5. По три диода в положительном и отрицательном теплоотводах.
  6. Регулятор напряжения, обеспечивает стабильную работу автомобильной сети при колебаниях электрической нагрузки, изменении частоты вращения ротора и перепадах температуры окружающей среды.
  7. Щеточный узел – пластиковая основа с установленными подпружиненными щетками.
  8. Защитная крышка –закрывает диодный модуль.

Интересно! Чем больше величина передаточного отношения (отношение диаметров шкива коленчатого вала к шкиву генератора), тем больше тока генераторный узел отдает в автосеть.

Схема генератора переменного тока

как работает генератор

Принцип действия генераторов ПТ базируется на свойствах электромагнитной индукции, что и отражается в схеме таких агрегатов:

  1. неподвижная якорная часть;
  2. вращающаяся индукторная часть;
  3. кольца контактного типа;
  4. скользящая щеточная часть.

Характерным отличием трехфазных генераторов является электрическая схема, отображающая особое соединение на фазных обмотках.

Виды автогенераторов

Автомобильный генератор существует двух видов:

  1. Генератор постоянного тока на современных автомобилях не используется. Для его работы не требуется выпрямление тока. Ранее применялся на автомобилях Победа, ГАЗ-51 и некоторых других марках, выпущенных до 1960 года.
  2. Генератор переменного тока широко применяется на автомобилях в настоящее время. Первые такие генераторы были разработаны в Америке в 1946 году. Это более надежная и современная конструкция. На выходе генератора встроен полупроводниковый выпрямитель.

Устройство и работа

Оба вида генераторов служат для выработки электрического тока, необходимого для эксплуатации автомобиля. Их устройство и принцип работы имеют отличительные особенности, так как они вырабатывают разные виды тока. Рассмотрим конструктивные особенности и принцип действия, которые имеет автомобильный генератор каждого вида.

Читайте так же:
Какие бывают диодные ленты
Автомобильный генератор постоянного тока

Avtogenerator postoiannogo toka

Такой автомобильный генератор имеет много недостатков:
  • Малая эффективность работы.
  • Недостаточная мощность.
  • Несовершенная схема подключения.
  • Необходим постоянный контроль.
  • Частое техническое обслуживание.
  • Малый срок службы.

Аналогичные конструкции, включающие в себя коллектор, могут одновременно функционировать в режиме генератора или двигателя. В гибридных автомобилях они нашли широкое применение.

Их отличием от автогенераторов переменного тока является то, что создающие магнитное поле электромагниты абсолютно неподвижны. Электродвижущая сила находится во вращающихся обмотках ротора. Электрический ток снимается с полуколец, изолированных между собой. На каждой щетке имеется напряжение одной полярности.

Автомобильный генератор переменного тока

Это популярная модель современных автогенераторов. Любая конструкция автогенератора включает в себя обмотку, расположенную в неподвижном статоре, который зафиксирован между двумя крышками: задней и передней. Со стороны задней крышки находятся контактные кольца ротора. Со стороны передней крышки находится привод со шкивом. Автомобильный генератор расположен впереди двигателя и крепится с помощью болтового соединения на специальные кронштейны. Натяжная проушина и крепежные лапы расположены на крышках генератора.

Avtogenerator peremennogo toka ustroistvo

Крышки генератора изготовлены литьем из алюминиевых сплавов. Они имеют окна для вентиляции корпуса генератора. В разных конструкциях такие окна могут выполняться как в торцевой части генератора, так и на цилиндрической части над обмотками статора.

На задней крышке закреплен щеточный узел, объединенный с регулятором напряжения, а также блок выпрямителя. Крышки генератора стягиваются длинными винтами, зажимая между собой корпус статора с обмотками.

Статор автогенератора состоит:

Avtogenerator stator

Статор изготавливается из листовой стали толщиной 1 мм. Для экономии металла конструкторы создали статор, состоящий из отдельных сегментов в виде подковы. Листы статора скреплены между собой в одну конструкцию с помощью заклепок или сварки. Все основные виды конструкций статора содержат 36 пазов, в которых находится обмотка. Пазы статора изолированы эпоксидным компаундом или специальной пленкой.

Ротор генератора состоит:

Avtomobilnyi generator rotor

Автомобильный генератор имеет особенный вид системы полюсов ротора , состоящей из двух половин, имеющих выступы в виде клюва. На каждой половине имеется шесть полюсов, которые изготавливаются методом штамповки. Полюсные половины напрессовываются на вал. Между ними устанавливается втулка, на которой расположена обмотка возбуждения. Вал ротора обычно изготавливается из автоматной стали низкой твердости. Но при использовании роликового подшипника, который работает на конце вала со стороны задней крышки, вал изготавливают из твердой легированной стали, при этом цапфу вала подвергают закалке. Конец вала имеет резьбу, шпоночный паз для фиксации шкива.

В современных генераторах шпонка не применяется. Шкив фиксируется на валу усилием затяжки гайки. Для облегчения разборки на валу имеется шестигранный выступ для ключа, или углубление.

Щетки автогенератора расположены в щеточном узле и прижимаются к кольцам с помощью пружин.

Читайте так же:
Как развести дисковую пилу
Автомобильный генератор может оснащаться двумя типами щеток:
  1. Меднографитовые.
  2. Электрографитовые.

Второй тип обладает значительной потерей напряжения при контакте с кольцом. Это отрицательно влияет на выходные параметры генератора. Положительным моментом является длительный срок службы колец и щеток.

Узел выпрямления используется двух типов:
  1. Теплоотводящие пластины, в которые запрессованы силовые диоды выпрямителя.
  2. Конструкция с большими ребрами охлаждения, на которые припаиваются таблеточные диоды.

Вспомогательный выпрямитель включает в себя диоды в пластиковом корпусе формой в виде горошины или цилиндра, а также могут изготавливаться отдельным герметичным блоком, подключаемым к схеме специальными шинами.

Avtomobilnyi generator vypriamitel

Большую опасность для автогенератора может вызвать короткое замыкание теплоотводящих пластин положительного и отрицательного полюса. Это может произойти из-за случайного попадания металлического предмета или токопроводящей грязи. При этом в цепи аккумулятора возникает замыкание, которое может привести к пожару. Чтобы этого не произошло, многие токопроводящие элементы выпрямителя покрывают слоем изоляции.

В генераторе используются шариковые радиальные подшипники с заложенной в них разовой смазкой и уплотнением. Роликовые подшипники иногда применяются на импортных генераторах.

Охлаждение автогенератора происходит за счет закрепленных на валу лопастей вентилятора. Воздух засасывается в отверстия задней крышки. Существуют и другие способы охлаждения.

На автомобилях, у которых подкапотное пространство слишком плотное, и имеющее большую температуру, используют генераторы с особым кожухом, по которому отдельно поступает прохладный воздух для охлаждения.

Регулятор напряжения

Служит для поддержания напряжения автогенератора в необходимом диапазоне для нормальной работы электрооборудования автомобиля.

Avtomobilnyi generator reguliator

Такие регуляторы работают на основе полупроводниковых элементов. Их конструктивное исполнение может быть различным, но принцип их действия не отличается.

Регуляторы напряжения имеют свойство термокомпенсации. Это способность изменять величину напряжения в зависимости от температуры рабочего пространства для наилучшей зарядки аккумулятора. Чем прохладнее воздух, тем выше должно быть подводимое к аккумулятору напряжение.

Работа генератора

При запуске двигателя автомобиля главным потребителем электричества является стартер. При этом сила тока может достичь нескольких сотен ампер. В таком режиме электрооборудование работает только от аккумулятора, который подвержен сильному разряду. После запуска мотора автомобильный генератор является основным источником питания.

Во время работы двигателя происходит непрерывная дозарядка аккумулятора и обеспечивается работа электрических потребителей, подключенных к бортовой сети автомобиля. Если генератор выйдет из строя, то аккумуляторная батарея быстро разрядится. После зарядки напряжение аккумулятора и генератора отличается незначительно, поэтому зарядный ток уменьшается.

При работе мощных электроприборов автомобиля и низких оборотах двигателя, общий ток потребления становится выше способности генератора, поэтому реле напряжения переключает питание на аккумулятор.

Крепление и привод

Генератор приводится в действие с помощью шкива двигателя через ременную передачу. Обороты вращения генератора зависят от диаметра шкива генератора и шкива коленвала двигателя.

Современные автомобили оснащены поликлиновым ремнем, так как он обладает большей гибкостью и может приводить в действие шкивы небольшого диаметра. Это позволяет получить большие обороты генератора. Ремень может натягиваться разными способами, в зависимости от марки автомобиля и конструкции натяжителя. Чаще всего в качестве натяжителя используют специальные ролики.

Читайте так же:
Изменение технологического процесса это
Неисправности
Автогенераторы представляют собой надежное устройство, однако у них также случаются некоторые неисправности, которые делятся на два вида:
  1. Механические неисправности чаще всего возникают вследствие износа деталей: шкива, приводного ремня, подшипников качения, меднографитных щеток. Такие неисправности легко обнаруживаются, так как возникают посторонние шумы, стуки со стороны генератора. Эти поломки устраняют путем замены изношенных деталей, так как восстановлению они не подлежат.
  2. Электрические неисправности возникают гораздо чаще. Они могут выражаться в замыкании обмоток статора или ротора, поломке регулятора напряжения, пробое выпрямителя и т.д. До выявления неисправностей такие поломки могут отрицательно повлиять на аккумуляторную батарею. Например, пробитый регулятор напряжения будет постоянно перезаряжать батарею. При этом нет особых внешних признаков. Это выявляется только с помощью замеров напряжения выхода генератора.

Электрические неисправности также устраняются путем замены неисправных деталей новыми. Замыкание в обмотках требует их перемотки, что значительно повышает стоимость ремонта. В торговой сети можно найти запчасти к генераторам, в том числе и корпус статора с обмотками.

Как устроен генератор сигналов?

Устройство генерирует импульсы различной природы для замера параметров электронных приборов. Большинство генераторов работает только при наличии входного импульса, амплитуда которого постоянно меняется.

Стандартная модель сигнального генератора состоит из нескольких частей:

  1. Экран на передней панели. Нужен для отслеживания колебаний и управления ими.
  2. Редактор. Расположен в верхней половине экрана. Позволяет выбрать функцию.
  3. Секвенсор. Размещён чуть ниже редактора, дает информацию о частоте колебаний.
  4. Регулятор. Контролирует и настраивает частоту изменений.
  5. Выходы сигналов. Обычно располагаются под экраном в самом низу прибора. Рядом – кнопка включения оборудования.

Смещение сигнала и его амплитуда обычно регулируются 2 кнопками. Работа с файлами происходит через мини-панель. Она дает пользователю просмотреть результаты тестирования или сохранить их для будущего анализа.

Принцип действия

Рассмотрим схему действия на примере простейшего электронного генератора. Есть проводник и магнитное поле, по которому он движется. В качестве проводника обычно используют рамку.

Принцип действия таков:

  1. Рамка крутится внутри поля и пересекает линии магнитной индукции, отчего образуется электродвижущая сила.
  2. Электродвижущая сила воздействует на ток, который начинает двигаться по рамке.
  3. Электроток проникает в наружную цепь за счет контактных колец.

Схема генератора похожа на схему усилителя. Разница в том, что у первого нет источника входного сигнала. Он заменяется сигналом положительной обратной связи (ПОС).

В процессе обратной связи (ОС) часть выходного сигнала направляется на входную цепь. Структура такого импульса задается спецификой цепи обратной связи. Чтобы обеспечить нужную периодичность колебаний, цепи ОС создают на базе LC или RC-цепей. Частота будет зависеть от времени перезарядки конденсатора.

Читайте так же:
Какого цвета провод земля

После формировки в цепи ПОС сигнал отправляется на вход усилителя. Там он умножается в несколько раз и поступает на выход. Оттуда часть отправляется на вход посредством цепи ПОС и снова ослабляется, возвращаясь к исходному значению. Благодаря такой схеме внутри устройства поддерживается постоянная амплитуда выходного сигнала.

Генератор постоянного тока

В позапрошлом веке, динамо-машиной называли генератор постоянного тока. Со временем промышленные генераторы, были вытеснены генераторами переменного тока, пригодного для преобразования посредством трансформаторов, и очень удобного для передачи тока на большие расстояния с незначительными потерями.

Сегодня под словом «динамо», как правило, подразумевают маленькие велосипедные генераторы (для фар) или ручные генераторы (для туристических фонариков). Что касается промышленных генераторов, то на сегодняшний день все это — генераторы переменного тока. Давайте, однако, вспомним, как развивались и совершенствовались первые «динамо».

Генератор постоянного тока

Динамо-машина для велосипеда

Первый образец генератора постоянного тока, или униполярного динамо, был предложен в далеком 1832 году Майклом Фарадеем, когда он только открыл явление электромагнитной индукции. Это был так называемый «диск Фарадея» — простейший генератор постоянного тока. Статором в нем служил подковообразный магнит, а в качестве ротора выступал вращаемый вручную медный диск, ось и край которого пребывали в контакте с токосъемными щетками.

Генератор постоянного тока

Диск Фарадея

Когда диск вращали, то в той части диска, которая пересекала магнитный поток между полюсами магнита статора, наводилась ЭДС, приводящая, в случае если цепь между щетками была замкнута на нагрузку, к появлению радиального тока в диске. Подобные униполярные генераторы по сей день используются там, где требуются большие постоянные токи без выпрямления.

Генератор переменного тока впервые построил француз Ипполит Пикси, это произошло в том же 1832 году. Статор динамо-машины содержал включенные последовательно пару катушек, ротор представлял собой подковообразный постоянный магнит, кроме того в конструкции имелся щеточный коммутатор.

Генератор постоянного тока

Первый генератор переменного тока

Магнит вращался, пересекал магнитным потоком сердечники катушек, наводил в них гармоническую ЭДС. А автоматический коммутатор служил для выпрямления и получения в нагрузке постоянного пульсирующего тока.

Позже, в 1842 году, Якоби предложит разместить магниты на статоре, а обмотку — на роторе, который также вращался бы через редуктор. Это сделает генератор более компактным.

В 1856 году, для питания серийных дуговых ламп Фредерика Холмса, (эти лампы использовали в прожекторах маяков), самим Фредериком Холмсом была предложена конструкция генератора, похожая на генератор Якоби, но дополненная центробежным регулятором Уатта для поддержания напряжения на лампе постоянным при разном токе нагрузки, что достигалось путем автоматического сдвига щеток.

Генератор постоянного тока

Генератор Холмса

Статор содержал 50 магнитов, а конструкция в общем весила 4 тонны, и развивала мощность чуть больше 7 кВт. Было выпущено примерно 100 таких генераторов под маркой «Альянс».

Между тем, машины с постоянными магнитами отличались одним существенным недостатком, магниты теряли со временем намагниченность и портились от вибрации, в итоге генерируемое машиной напряжение становилось со временем все ниже и ниже. При этом намагниченностью нельзя было управлять, чтобы стабилизировать напряжение.

Читайте так же:
Какое масло для бензопилы хускварна

В качестве решения пришла идея электромагнитного возбуждения. Идея пришла в голову английского изобретателя Генри Уайльда, который в 1864 году запатентовал генератор с возбудителем на постоянном магните, — магнит возбуждения просто монтировался на валу генератора.

Позже настоящую революцию в генераторах совершит немецкий инженер Вернер Сименс, который откроет подлинный динамоэлектрический принцип, и поставит производство новых генераторов постоянного тока на поток.

Принцип самовозбуждения заключается в том, чтобы использовать остаточную намагниченность сердечника ротора для пускового возбуждения, а затем, когда генератор возбудится, использовать в качестве намагничивающего тока ток нагрузки, или включить в работу специальную обмотку возбуждения, питаемую генерируемым током параллельно нагрузке. В результате, положительная обратная связь приведет к увеличению магнитного потока возбуждения генерируемым током.

В числе первых принцип самовозбуждения, или динамоэлектрический принцип, отметит инженер из Дании Сорен Хиорт. Он упомянет в своем патенте от 1854 года возможность использования остаточной намагниченности с целью реализации явления электромагнитной индукции для получения генерации. Однако, опасаясь того, что остаточного магнитного потока будет недостаточно, Хиорт предложит дополнить конструкцию динамо постоянными магнитами. Этот генератор так и не будет воплощен.

Позже, в 1856 году, аналогичную идею выскажет Аньеш Йедлик — член Венгерской академии наук, но ничего так и не запатентует. Только спустя 10 лет Самюэль Варлей, ученик Фарадея, реализует на практике принцип самовозбуждающегося динамо. Его заявка на патент (в 1866 году) содержала описание устройства очень похожего на генератор Якоби, только постоянные магниты уже были заменены обмоткой возбуждения — электромагнитами возбуждения. Перед стартом сердечники намагничивались постоянным током.

Генератор постоянного тока

Генератор постоянного тока Сименса

В начале 1867 года в Берлинской Академии наук с докладам выступал изобретатель Вернер Сименс. Он представил публике генератор похожий на генератор Варлея, названный «динамо-машиной». Старт машины осуществлялся в режиме двигателя, для того чтобы обмотки возбуждения намагнитились. Затем машина превращалась в генератор.

Это была настоящая революция в понимании и проектировании электрических машин. В Германии начался широкий выпуск динамо-машин Сименса — генераторов постоянного тока с самовозбуждением — первых промышленных динамо-машин.

Конструкция динамо-машин с течением времени менялась: Теофил Грамм, в том же 1867 году, предложил кольцевой якорь, а в 1872 году главный конструктор компании Сименс-Гальске, Гефнер Альтенек, предложит барабанную намотку.

Так генераторы постоянного тока примут свой окончательный облик. В 19 веке, с переходом на переменный ток, гидроэлектростанции и тепловые электростанции станут вырабатывать уже переменный ток на генераторах переменного тока. Но это уже совсем другая история…

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector