Aniks-lift.ru

Подъемное оборудование
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Закон Кулона, конденсатор, сила тока, закон Ома, закон Джоуля – Ленца

Закон Кулона, конденсатор, сила тока, закон Ома, закон Джоуля – Ленца

Закон Кулона — это один из основных законов электростатики. Он определяет величину и направление силы взаимодействия между двумя неподвижными точечными зарядами.

Под точечным зарядом понимают заряженное тело, размер которого много меньше расстояния его возможного воздействия на другие тела. В таком случае ни форма, ни размеры заряженных тел не влияют практически на взаимодействие между ними.

Закон Кулона экспериментально впервые был доказан приблизительно в 1773 г. Кавендишем, который использовал для этого сферический конденсатор. Он показал, что внутри заряженной сферы электрическое поле отсутствует. Это означало, что сила электростатического взаимодействия меняется обратно пропорционально квадрату расстояния, однако результаты Кавендиша не были опубликованы.

В 1785 г. закон был установлен Ш. О. Кулоном с помощью специальных крутильных весов.

Опыты Кулона позволили установить закон, поразительно напоминающий закон всемирного тяготения.

Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.

В аналитическом виде закон Кулона имеет вид:

где $|q_1|$ и $|q_2|$ — модули зарядов; $r$ — расстояние между ними; $k$ — коэффициент пропорциональности, зависящий от выбора системы единиц. Сила взаимодействия направлена по прямой, соединяющей заряды, причем одноименные заряды отталкиваются, а разноименные — притягиваются.

Сила взаимодействия между зарядами зависит также от среды между заряженными телами.

В воздухе сила взаимодействия почти не отличается от таковой в вакууме. Закон Кулона выражает взаимодействие зарядов в вакууме.

Кулон — единица электрического заряда. Кулон (Кл) — единица СИ количества электричества (электрического заряда). Она является производной единицей и определяется через единицу силы тока 1 ампер (А), которая входит в число основных единиц СИ.

За единицу электрического заряда принимают заряд, проходящий через поперечное сечение проводника при силе тока $1$А за $1$с.

То есть $1$ Кл$= 1А·с$.

Заряд в $1$ Кл очень велик. Сила взаимодействия двух точечных зарядов по $1$ Кл каждый, расположенных на расстоянии $1$ км друг от друга, чуть меньше силы, с которой земной шар притягивает груз массой $1$ т. Сообщить такой заряд небольшому телу невозможно (отталкиваясь друг от друга, заряженные частицы не могут удержаться в теле). А вот в проводнике (который в целом электронейтрален) привести в движение такой заряд просто (ток в $1$ А вполне обычный ток, протекающий по проводам в наших квартирах).

Коэффициент $k$ в законе Кулона при его записи в СИ выражается в $Н · м^2$ / $Кл^2$. Его численное значение, определенное экспериментально по силе взаимодействия двух известных зарядов, находящихся на заданном расстоянии, составляет:

Часто его записывают в виде $k=<1>/<4πε_0>$, где $ε_0=8.85×10^<-12>Кл^2$/$H·м^2$ — электрическая постоянная.

Электрическая емкость конденсатора

Электроемкость

Электроемкостью проводника $С$ называют численную величину заряда, которую нужно сообщить проводнику, чтобы изменить его потенциал на единицу:

Емкость характеризует способность проводника накапливать заряд. Она зависит от формы проводника, его линейных размеров и свойств среды, окружающей проводник.

Единицей емкости в СИ является фарада ($Ф$) — емкость проводника, в котором изменение заряда на $1$ кулон меняет его потенциал на $1$ вольт.

Электрический конденсатор

Электрический конденсатор (от лат. condensare, буквально сгущать, уплотнять) — устройство, предназначенное для получения электрической емкости заданной величины, способное накапливать и отдавать (перераспределять) электрические заряды.

Конденсатор — это система из двух или нескольких равномерно заряженных проводников с равными по величине зарядами, разделенных слоем диэлектрика. Проводники называются обкладками конденсатора. Как правило, расстояние между обкладками, равное толщине диэлектрика, намного меньше размеров самих обкладок, так что поле в конденсаторе практически все сосредоточено между его обкладками. Если обкладки являются плоскими пластинами, поле между ними однородно. Электроемкость плоского конденсатора определяется по формуле:

где $q$ — заряд конденсатора, $U$ — напряжение между его обкладками, $S$ — площадь пластины, $d$ — расстояние между пластинами, $ε_<0>$ — электрическая постоянная, $ε$ — диэлектрическая проницаемость среды.

Под зарядом конденсатора понимают абсолютное значение заряда одной из пластин.

Энергия поля конденсатора

Энергия заряженного конденсатора выражается формулами

которые выводятся с учетом выражений для связи работы и напряжения и для емкости плоского конденсатора.

Энергия электрического поля. Объемная плотность энергии электрического поля (энергия поля в единице объема) напряженностью $Е$ выражается формулой:

где $ε$ — диэлектрическая проницаемость среды, $ε_0$ — электрическая постоянная.

Читайте так же:
Буровые станки ударного бурения

Сила тока

Электрическим током называется упорядоченное (направленное) движение заряженных частиц.

Сила электрического тока — это величина ($I$), характеризующая упорядоченное движение электрических зарядов и численно равная количеству заряда $∆q$, протекающего через определенную поверхность $S$ (поперечное сечение проводника) за единицу времени:

Итак, чтобы найти силу тока $I$, надо электрический заряд $∆q$, прошедший через поперечное сечение проводника за время $∆t$, разделить на это время.

Сила тока зависит от заряда, переносимого каждой частицей, скорости их направленного движения и площади поперечного сечения проводника.

Рассмотрим проводник с площадью поперечного сечения $S$. Заряд каждой частицы $q_0$. В объеме проводника, ограниченном сечениями $1$ и $2$, содержится $nS∆l$ частиц, где $n$ — концентрация частиц. Их общий заряд $q=q_<0>nS∆l$. Если частицы движутся со средней скоростью $υ$, то за время $∆t=<∆l>/<υ>$ все частицы, заключенные в рассматриваемом объеме, пройдут через поперечное сечение $2$. Сила тока, следовательно, равна:

В СИ единица силы тока является основной и носит название ампер (А) в честь французского ученого А. М. Ампера (1755-1836).

Силу тока измеряют амперметром. Принцип устройства амперметра основан на магнитном действии тока.

Оценка скорости упорядоченного движения электронов в проводнике, проведенная по формуле для медного проводника с площадью поперечного сечения $1мм^2$, дает весьма незначительную величину — $∼0.1$ мм/с.

Закон Ома для участка цепи

Сила тока на участке цепи равна отношению напряжения на этом участке к его сопротивлению.

Закон Ома выражает связь между тремя величинами, характеризующими протекание электрического тока в цепи: силой тока $I$, напряжением $U$ и сопротивлением $R$.

Закон этот был установлен в 1827 г. немецким ученым Г. Омом и поэтому носит его имя. В приведенной формулировке он называется также законом Ома для участка цепи. Математически закон Ома записывается в виде следующей формулы:

Зависимость силы тока от приложенной разности потенциалов на концах проводника называется вольт-амперной характеристикой (ВАХ) проводника.

Для любого проводника (твердого, жидкого или газообразного) существует своя ВАХ. Наиболее простой вид имеет вольт-амперная характеристика металлических проводников, заданная законом Ома $I=/$, и растворов электролитов. Знание ВАХ играет большую роль при изучении тока.

Закон Ома — это основа всей электротехники. Из закона Ома $I=/$ следует:

  1. сила тока на участке цепи с постоянным сопротивлением пропорциональна напряжению на концах участка;
  2. сила тока на участке цепи с неизменным напряжением обратно пропорциональна сопротивлению.

Эти зависимости легко проверить экспериментально. Полученные с использованием схемы, графики зависимости силы тока от напряжения при постоянном сопротивлении и силы тока от сопротивления представлены на рисунке. В первом случае использован источник тока с регулируемым выходным напряжением и постоянное сопротивление $R$, во втором — аккумулятор и переменное сопротивление (магазин сопротивлений).

Электрическое сопротивление

Электрическое сопротивление — это физическая величина, характеризующая противодействие проводника или электрической цепи электрическому току.

Электрическое сопротивление определяется как коэффициент пропорциональности $R$ между напряжением $U$ и силой постоянного тока $I$ в законе Ома для участка цепи.

Единица сопротивления называется омом (Ом) в честь немецкого ученого Г. Ома, который ввел это понятие в физику. Один ом ($1$ Ом) — это сопротивление такого проводника, в котором при напряжении $1$ В сила тока равна $1$ А.

Удельное сопротивление

Сопротивление однородного проводника постоянного сечения зависит от материла проводника, его длины $l$ и поперечного сечения $S$ и может быть определено по формуле:

где $ρ$ — удельное сопротивление вещества, из которого изготовлен проводник.

Удельное сопротивление вещества — это физическая величина, показывающая, каким сопротивлением обладает изготовленный из этого вещества проводник единичной длины и единичной площади поперечного сечения.

Из формулы $R=ρ/$ следует, что

Величина, обратная $ρ$, называется удельной проводимостью $σ$:

Так как в СИ единицей сопротивления является $1$ Ом, единицей площади $1м^2$, а единицей длины $1$ м, то единицей удельного сопротивления в СИ будет $1$ Ом$·м^2$/м, или $1$ Ом$·$м. Единица удельной проводимости в СИ — $Ом^<-1>м^<-1>$.

На практике площадь сечения тонких проводов часто выражают в квадратных миллиметрах (м$м^2$). В этом случае более удобной единицей удельного сопротивления является Ом$·$м$м^2$/м. Так как $1 мм^2 = 0.000001 м^2$, то $1$ Ом$·$м $м^2$/м$ = 10^<-6>$ Ом$·$м. Металлы обладают очень малым удельным сопротивлением — порядка ($1 ·10^<-2>$) Ом$·$м$м^2$/м, диэлектрики — в $10^<15>-10^<20>$ раз большим.

Зависимость сопротивления от температуры

С повышением температуры сопротивление металлов возрастает. Однако существуют сплавы, сопротивление которых почти не меняется при повышении температуры (например, константан, манганин и др.). Сопротивление же электролитов с повышением температуры уменьшается.

Читайте так же:
Как изготовить печь для бани

Температурным коэффициентом сопротивления проводника называется отношение величины изменения сопротивления проводника при нагревании на $1°$С к величине его сопротивления при °$С:

Зависимость удельного сопротивления проводников от температуры выражается формулой:

В общем случае $α$ зависит от температуры, но если интервал температур невелик, то температурный коэффициент можно считать постоянным. Для чистых металлов $α=(<1>/<273>)K^<-1>$. Для растворов электролитов $α

Значение термина «удельный»

Можно говорить о двух толкованиях, физическом и статистическом:

  • В физике так называют величину, измеренную в единице чего-либо. Для примера возьмем комнату, и подсчитаем в ней количество водяного пара. Получив величину, А граммов, мы сможем сказать, что влажность здесь составляет, А граммов водяного пара на целую комнату. Зная общее количество воздуха в помещении (Б кг), мы можем найти, сколько воды содержится в одном килограмме воздуха, узнав его удельную влажность. В одном килограмме воздуха комнаты содержится А/Б г/кг водяного пара. Таким образом, синонимом термина выступает слово относительный.
  • В статистических науках так называют частный показатель, взятый относительно некого целого. Для примера возьмем годовой бюджет страны, составляющий 500 млн, и вычислим долю расходов на спорт. Предположим, на спорт выделен 1 млн рублей — это 0,2% от всех планируемых трат. Не самая весомая статья бюджета.

Конденсатор. Принцип работы, основные характеристики.

.Конденсатор. Принцип работы, основные характеристики.

Конденсатор — распространенный двухполюсный электронный компонент, главным свойством которого является способность накапливать электрический заряд и «отпускать» его обратно. Процесс накопления заряда называется зарядкой, а процесс его потери – разрядкой.

Выпускаются конденсаторы самых разных типов и конструкций. Наиболее распространены в электронике и любительской радиотехнике следующие виды:

  • Керамические конденсаторы
  • Танталовые конденсаторы
  • Электролитические конденсаторы
  • Конденсаторы переменной емкости

Выпускаются конденсаторы самых разных типов и конструкций.

При включении в цепь электролитических конденсаторов необходимо соблюдать полярность. Отрицательный контакт, обычно, короче положительного и дополнительно может обозначаться соответствующими пометками на корпусе. Для керамических конденсаторов полярность подключения не имеет значения.

В простейшем виде конденсатор состоит их двух металлических пластин, называемых обкладками, которые разделены слоем диэлектрика.

В простейшем виде конденсатор состоит их двух металлических пластин

При включении конденсатора в цепь с источником тока, под воздействием электрического поля на одной обкладке накапливается положительный заряд, а на другой – отрицательный. Это будет происходить до тех пор, пока на обкладках не накопится максимально возможное количество заряда. Оно определяется важной характеристикой конденсатора — емкостью. Емкость конденсатора определяется количеством заряда, которое он может накопить при заданном напряжении:

Формула емкости.

Формула емкости

C — емкость конденсатора, q — заряд, U — напряжение.

Емкость зависит от таких физических характеристик, как, например, площадь обкладок, расстояние между ними и диэлектрическая проницаемость диэлектрика. Единицей измерения емкости конденсаторов в международной системе единиц (СИ) является Фарад (Ф).

Чем больше ёмкость, тем больший заряд может удерживать конденсатор при заданном напряжении, и тем меньше скорость его зарядки и разрядки.

Основные параметры конденсаторов:

  • Основной характеристикой конденсатора является его ёмкость, характеризующая способность конденсатора накапливать электрический заряд. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками. Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до тысяч микрофарад. Однако существуют конденсаторы (ионисторы) с ёмкостью до десятков фарад.
  • Конденсаторы также характеризуются удельной ёмкостью — отношением ёмкости к объёму (или массе) диэлектрика. Максимальное значение удельной ёмкости достигается при минимальной толщине диэлектрика, однако при этом уменьшается его напряжение пробоя.
  • Плотность энергии электролитического конденсатора зависит от конструктивного исполнения. Максимальная плотность достигается у больших конденсаторов, где масса корпуса невелика по сравнению с массой обкладок и электролита.
  • Другой, не менее важной характеристикой конденсаторов является номинальное напряжение — значение напряжения, обозначенное на конденсаторе, при котором он может работать в заданных условиях в течение срока службы с сохранением параметров в допустимых пределах. Номинальное напряжение зависит от конструкции конденсатора и свойств применяемых материалов. При эксплуатации напряжение на конденсаторе не должно превышать номинального. Для многих типов конденсаторов с увеличением температуры допустимое напряжение снижается, что связано с увеличением тепловой скорости движения носителей заряда и, соответственно, снижению требований для образования электрического пробоя.
  • Полярность. Многие конденсаторы с оксидным диэлектриком (электролитические) функционируют только при корректной полярности напряжения из-за химических особенностей взаимодействия электролита с диэлектриком. При обратной полярности напряжения электролитические конденсаторы обычно выходят из строя из-за химического разрушения диэлектрика с последующим увеличением тока, вскипанием электролита внутри и, как следствие, с вероятностью взрыва корпуса.
Читайте так же:
Выбор режимов резания при фрезеровании

Основная классификация конденсаторов проводится по типу диэлектрика в конденсаторе. Тип диэлектрика определяет основные электрические параметры конденсаторов: сопротивление изоляции, стабильность ёмкости, величину потерь и др.

По виду диэлектрика различают:

  • Конденсаторы вакуумные (между обкладками находится вакуум).
  • Конденсаторы с газообразным диэлектриком.
  • Конденсаторы с жидким диэлектриком.
  • Конденсаторы с твёрдым неорганическим диэлектриком: стеклянные (стеклоэмалевые, стеклокерамические, стеклоплёночные), слюдяные, керамические, тонкослойные из неорганических плёнок.
  • Конденсаторы с твёрдым органическим диэлектриком: бумажные, металлобумажные, плёночные, комбинированные — бумажноплёночные, тонкослойные из органических синтетических плёнок.
  • Электролитические и оксидно-полупроводниковые конденсаторы. Такие конденсаторы отличаются от всех прочих типов, прежде всего, большой удельной ёмкостью. В качестве диэлектрика используется оксидный слой на металлическом аноде. Вторая обкладка (катод) — это или электролит (в электролитических конденсаторах), или слой полупроводника (в оксидно-полупроводниковых), нанесённый непосредственно на оксидный слой. Анод изготовляется, в зависимости от типа конденсатора, из алюминиевой, ниобиевой или танталовой фольги или спечённого порошка. Время наработки на отказ типичного электролитического конденсатора 3000-5000 часов при максимально допустимой температуре, качественные конденсаторы имеют время наработки на отказ не менее 8000 часов при температуре 105°С. Рабочая температура — основной фактор, влияющий на продолжительность срока службы конденсатора. Если нагрев конденсатора незначителен из-за потерь в диэлектрике, обкладках и выводах, (например, при использовании его во времязадающих цепях при небольших токах или в качестве разделительных), можно принять, что интенсивность отказов снижается вдвое при снижении рабочей температуры на каждые 10 °C вплоть до +25 °C. Твердотельные конденсаторы — вместо традиционного жидкого электролита используется специальный токопроводящий органический полимер или полимеризованный органический полупроводник. Время наработки на отказ

Последовательное соединение конденсаторов.

Последовательное соединение конденсаторов

При последовательном соединении конденсаторов уменьшается общая емкость и увеличивается общее напряжение конденсаторов. Общая емкость при последовательном соединении конденсаторов будет вычисляться по формуле:

Последовательное соединение конденсаторов

Общее напряжение будет равняться сумме напряжений всех конденсаторов.

Например: мы имеем три конденсатора по 30 мкФ x 100 В каждый. При их последовательном соединении общий конденсатор будет иметь следующие данные: 10 мкФ x 300 В.

Параллельное соединение конденсаторов.

Параллельное соединение конденсаторов

При параллельном соединении общая емкость конденсаторов складывается, а допустимое напряжение всего набора будет равно напряжению конденсатора, имеющего самое низкое значение допустимого напряжения из всего набора.

Параллельное соединение конденсаторов

Например: мы имеем три конденсатора 30 мкФ x 100 В, соединённые параллельно. Параметры всего набора конденсаторов в этом случае будут следующие: 90 мкФ x 100 В.

Соединение более двух конденсаторов последовательно редко встречается в реальных схемах. Хотя для увеличения общего напряжения такой набор может встретиться в высоковольтных источниках питания. А вот в низковольтных источниках довольно часто встречается параллельное соединение нескольких конденсаторов для сглаживания пульсаций после выпрямления при больших токах потребления.

Обратите внимание, формулы вычисления емкости последовательного и параллельного соединения конденсаторов в точности обратны формулам вычисления сопротивления при последовательном и параллельном соединении резисторов.

Понравилась статья? Не забудь поделиться с друзьями в соц. сетях. А также подписаться на наш канал на YouTube, вступить в группу Вконтакте, в группу на Facebook.

Единица и формулы расчёта

Ёмкость в виде электрического свойства, способного хранить заряды, измеряется в фарадах (Ф) и обозначается С. Величина названа в честь английского физика Майкла Фарадея. Конденсатор ёмкостью 1 фарад способен хранить заряд в 1 кулон на пластинах с напряжением 1 вольт. Значение С всегда положительно.

Математическое выражение фарада

Какова емкость конденсатора

Ёмкость конденсатора — постоянная величина, означающая потенциальную способность хранить энергию. Количество заряда, хранимое в отдельно взятый момент, определяется уравнением Q=CV, где V — приложенное напряжение. Таким образом, регулируя напряжение на пластинах, можно увеличивать или уменьшать заряд. Эта формула ёмкости в виде C=Q/V в единичных значениях определяет, в чём измеряется ёмкость конденсатора в СИ, и является математическим выражением фарада.

Специалисты по электронике единицу в один фарад считают не совсем практичной, поскольку она представляет собой огромное значение. Даже 1/1000 F — это очень большая ёмкость. Как правило, для реальных электрических компонентов применяют следующие величины:

  • пикофарад — 10—12 Ф;
  • нанофарад — 10—9 Ф;
  • микрофарад — 10—6 Ф.

Диэлектрическая проницаемость

Фактор, благодаря которому изолятор определяет ёмкость конденсатора, называется диэлектрической проницаемостью. Обобщённая формула расчёта ёмкости конденсатора с параллельными пластинами представлена выражением C= ε (A / d), где:

  • А — площадь меньшей пластины;
  • d — расстояние между ними;
  • ε — абсолютная проницаемость используемого диэлектрического материала.
Читайте так же:
Медные украшения для здоровья

Виды конденсаторов

Диэлектрическая проницаемость вакуума ε0 является константой и имеет значение 8,84х10—12 фарад на метр. Как правило, проводящие пластины разделены слоем изоляционного материала, а не вакуума. Чтобы найти ёмкость конденсатора, пластины которого находятся в воздухе, можно воспользоваться значением ε0. Разницей диэлектрической проницаемости атмосферы и вакуума можно пренебречь, поскольку их значения очень близки.

На практике в формулах нахождения ёмкости конденсатора используется относительная диэлектрическая проницаемость в качестве коэффициента, означающая, насколько электрическое поле между зарядами уменьшается в диэлектрике по сравнению с вакуумом. Некоторые значения этой величины для различных материалов:

  • 1,0006 — воздух;
  • 2,5—3,5 — бумага;
  • 3—10 — стекло;
  • 5—7 — слюда.

Поскольку эффективность конденсатора зависит от применяемого в нём изолятора, его качество как накопителя можно определить через удельную ёмкость — величину, равную отношению ёмкости к объёму диэлектрика.

Емкость при последовательном и параллельном соединении АКБ

Есть устройства, требующие повышенных значений тока и напряжения, которые не обеспечивают стандартные элементы питания. В таких ситуациях соединяют аккумуляторы, и связки бывают разные.

Доступно три схемы:

  • последовательное соединение – суммируется напряжение аккумуляторов;
  • параллельное – суммируется емкость;
  • комбинированное – повышается энергоемкость и напряжение.

В сборке используют батареи, изготовленные по одной технологии. Например, не получится «связать» Li-Ion и Ni-Mh АКБ.

Если при последовательном соединении использовать батареи разной емкости, то у той, которая менее емкая, повысится внутреннее сопротивление. Напряжение начнет сильнее падать на других «банках», и наиболее слабый элемент быстро потеряет заряд.

При параллельном соединении требуется, чтобы элементы питания были одинаковы по напряжению. Допустим, если объединить батарею с высоким напряжением и малой энергоемкостью с батареей более емкой, но меньшим напряжением – «слабая» АКБ замкнет.

Взяв внешний элемент питания в количестве нескольких штук, причем одной фирмы, нельзя быть уверенным, что сборка окажется сбалансированной. Номинальный параметр емкости и напряжения при последовательном и параллельном соединении меняется, а значит «слабые» батареи быстрее износятся.

Энергоемкость АКБ – важная характеристика, на которую смотрят, подыскивая замену. На корпусах устройств написаны все рабочие параметры, но это номинальные значения. Измерить текущие, то есть реальные, можно и самому, для чего в большинстве случаев достаточно вооружиться мультиметром. Но если тестирования выполняются регулярно, стоит потратиться на специальный тестер, с которым на проверку будет уходить несколько секунд.

1. Электрохимическая система

Наиболее распространенными являются электрохимические системы на основе свинца, никеля и лития. Зарядные устройства создаются для каждой системы отдельно и не могут обслуживать другие. Если заряжать литиевый или никелевый аккумулятор зарядным устройством для свинцово-кислотного, это может вывести его из строя. Также электрохимия аккумулятора важна при утилизации, так как каждая система имеет свои регламентирующие требования безопасности. Выбор типа электрохимической схемы является важной составляющей для любого применения батареи, поэтому данную характеристику нельзя игнорировать.

2. Напряжение

На электрических батареях всегда отмечается их номинальное напряжение, однако напряжение разомкнутой цепи (НРЦ) на полностью заряженном аккумуляторе на 5-7 процентов выше номинального. НРЦ определяется электрохимической системой и количеством последовательно соединенных элементов. Замкнутый контур напряжения является рабочим напряжением. Всегда проверяйте правильность номинального напряжения перед подключением батареи. Ключевая характеристика батареи при выбору, которая должна точно соотвествоать требованиям.

Standard Range AGMDeep Cycle Range AGMGellyte Range GEL
свинцово-кислотные аккумуляторыаккумуляторы для газового котлагелевые аккумуляторы 12 вольт 100 ач и 200 ач
10 — 12 лет / 600 циклов10 — 12 лет / 700 циклов10 — 12 лет / 750 циклов
универсальная серия AGMдля глубоких разрядов AGMуниверсальная серия GEL

3. Емкость

Емкость представляет собой показатель удельной энергоемкости в ампер-часах (Ач). Ампер-час – это единица измерения, помогающая определить продолжительность работы батареи с определенной нагрузкой. Используя батарею с большей емкостью, вы, соответственно, получите более продолжительное время ее работы. Различная емкость не влияет на тип используемых зарядных устройств (главное, чтобы оно подходило по электрохимической схеме и вольтажу), но аккумулятору с большой емкостью потребуется и больше времени для зарядки. Меняя батарею в определенном устройстве, не допускайте изменения емкости более, чем на 25 процентов.

4. Пусковой ток

Показатель пускового тока наиболее важен для стартерных (так же известных как SLI) аккумуляторов, и в обязательном порядке указывается на них. Для него указывается сила тока в амперах, которую аккумулятор обеспечивает при температуре -18°С. В разных странах эта характеристика может указываться по-разному.

5. Удельная энергоемкость, плотность энергии

Удельная энергоемкость, или гравиметрическая плотность энергии, определяет отношение емкости батареи к весу (Вт*ч/кг); плотность энергии, или объемная плотность энергии — отношение к объему (Вт*ч/л). Аккумуляторы для потребительских товаров, от которых требуются долгая работа при умеренной нагрузке, как раз оптимизированы под высокий показатель удельной энергоемкости.

Читайте так же:
Деревообрабатывающие станки для дома самодельные
Marin GEL RangeDeep Cycle GEL RangeSolar GEL Range
аккумулятор для электромоторааккумуляторы глубокого разрядааккумуляторы для солнечных батарей
10 — 12 лет / 800 циклов10 — 12 лет / 800 циклов10 — 12 лет / 800 циклов
для электромоторов лодок и катеровдля глубоких циклических разрядовдля солнечных электростанций

6. Удельная мощность

Удельная мощность, или гравиметрическая плотность мощности, определяет нагрузочную способность. Аккумуляторы для электроинструментов оптимизированы под большую удельную мощность, имеют средний уровень удельной энергоемкости и очень низкое внутреннее сопротивление. На рисунке 1 показана аналогия взаимосвязи между удельной энергоемкостью (вода в бутылке) и удельной мощностью (вода из горлышка).

Взаимосвязь между удельной энергоемкостью и удельной мощностью

Рисунок 1: Взаимосвязь между удельной энергоемкостью и удельной мощностью. Вода в бутылке — удельная энергоемкость, размер горлышка определяет удельную мощность.

Электрическая батарея может иметь высокий показатель удельной энергоемкости, но слабую удельную мощность, например, такими свойствами обладает щелочная батарейка. И наоборот, примером высокой удельной мощности слабой удельной энергоемкости является суперконденсатор.

7. Значение «С»

Значение «C»определяет скорость заряда или разряда батареи. Показатель C-рейтинга в 1С означает, что аккумулятор может питать нагрузку током с силой, равной его емкости в течение одного часа. При показателе в 0.5С сила тока уменьшается в два раза, а время работы в два раза увеличивается, при 0.1С сила тока составляет одну десятую от емкости, а возможное время работы десятикратно увеличивается. Соответственно и при зарядке аккумулятора, 1С говорит о необходимости времени для заряда примерно 1 час, 0.5С — около 2 часов, а 0.1С — от 10 до 14 часов. (Смотрите также: Что такое С-рейтинг аккумулятора?)

8. Нагрузка

Нагрузка определяет ток, который поступает от батареи. Внутреннее сопротивление батареи и истощение уровня заряда приводят к падению напряжения, в конечном итоге вызывая разряд батареи. Мощность соотносится с текущей силой тока и измеряется в ваттах, энергия же коррелирует к физической работе, совершаемой в течение долгого времени, измеряемой в ватт-часах.

9. Ватты и вольт-амперы

Мощность электрической батареи выражается в ваттах или вольт-амперах. В ваттах — реальная мощность, которая может быть дозирована, а в вольт-амперах — полная мощность. На чисто резистивной нагрузке показатели в ваттах и вольт-амперах будут одинаковы, но при реактивной, например, при подключении индуктивного двигателя или флуоресцентной лампы, происходит фазовый сдвиг между напряжением и током, который снижает коэффициент мощности от идеального (1) к 0.7 или ниже. Соответственно, определение сечения электропроводки и мощности выключателей должно быть основано на значении полной мощности батареи.

Программное обеспечение STARe — шесть способов определения удельной теплоемкости

Расчет удельной теплоемкости на основании кривой теплового потока, полученной методом ДСК, может быть выполнен несколькими способами. В программном обеспечении STAR e МЕТТЛЕР ТОЛЕДО поддерживаются следующие методы:

Метод непосредственного расчета

Метод с использованием сапфира

(стандарт DIN 51007)

Изотермическая ступенчатая ДСК

ТМДСК со стационарным режимом

ТМДСК

TOPEM ®

Метод непосредственного расчета и метод с использованием сапфира реализуются с помощью обычных приборов ДСК и линейной температурной программы. Обычный прибор ДСК измеряет только общий тепловой поток (один сигнал). Однако существуют две составляющие теплоемкости: явная теплоемкость (обратимый тепловой поток) и скрытая теплоемкость (необратимый тепловой поток):

Скрытая теплоемкость связана с физико-химическими переходами (плавлением, кристаллизацией) или химическими реакциями. Эти тепловые эффекты наблюдаются на кривой ДСК в виде эндотермических и экзотермических пиков. Скрытая теплоемкость положительна в случае эндотермических эффектов и отрицательна в случае экзотермических.

Явная теплоемкость связана с количеством тепла, поглощаемого за счет перегруппировки и общего движения молекул. Эта составляющая теплоемкости всегда положительна. На кривой ДСК видно, что в отсутствие тепловых эффектов явная теплоемкость прямо связана с измеренным тепловым потоком. Для многих физико-химических переходов явная теплоемкость составляет базовую линию соответствующего пика.

Температурно-модулированная ДСК (ТМДСК) отличается от обычной ДСК тем, что позволяет разделить общий тепловой поток на обратимую и необратимую часть. Это повышает точность измерения в тех случаях, когда перекрываются разные тепловые эффекты, например стеклование (обратимый процесс) и релаксация энтальпии (необратимый процесс).

Температурные программы ТМДСК намного сложнее программ, используемых в обычном анализе ДСК. МЕТТЛЕР ТОЛЕДО предлагает три методики выполнения измерений ДСК с температурной модуляцией. Ниже указаны их основные особенности.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector