Алюминий: химические свойства и способность вступать в реакции с другими веществами
Алюминий: химические свойства и способность вступать в реакции с другими веществами
[Deposit Photos]
Металлы относятся к удобным для обработки материалам, и лидером среди них является алюминий, химические свойства которого давно известны людям. Этот металл, благодаря своим характеристикам, широко применяется в быту, и отыскать у себя дома изделие из алюминия сможет почти каждый человек. Следует детально рассмотреть свойства этого металла как элемента и как простого вещества.
[Deposit Photos]
Характеристика физических и технических параметров алюминия
- Алюминий относится к самым распространенным химическим элементам и характеризуется небольшим весом, мягкостью. Основные физические параметры металла, способность образовывать устойчивые к воздействию среды соединения, позволяют его использовать в различных отраслях промышленного производства.
- Металл является привлекательным материалом для работы в домашних условиях. Удельная теплота плавления алюминия составляет 390 кДж/кг, и для литейных целей расплавить его в бытовых условиях не составляет труда.
- Плавка металла может осуществляться поверхностным и внутренним нагревом. Способ внешнего теплового воздействия не требует особого оборудования и применяется в кустарных условиях.
- Алюминий, температура плавления которого зависит от чистоты соединения, давления, для перехода в жидкое состояние требует нагрева в среднем до 660 °C или 993,5°К.
- Существуют различные мнения относительно показателя температуры плавления металла в домашних условиях, но проверить их можно только на практике.
Получение и применение алюминия
Алюминий получают электролизом расплава оксида этого элемента:
Однако из-за небольшого выхода продукта, чаще используют способ получения алюминия электролизом смеси Na3[AlF6] и Al2O3. Реакция протекает при нагревании до 960С и в присутствии катализаторов – фторидов (AlF3, CaF2 и др.), при этом на выделение алюминия происходит на катоде, а на аноде выделяется кислород.
Алюминий нашел широкое применение в промышленности, так, сплавы на основе алюминия – основные конструкционные материалы в самолето- и судостроении.
Понятие легкоплавких металлов/сплавов
Легкоплавкость – понятие растяжимое, особенно это актуально для промышленности. В химии легкоплавкими считаются элементы группы металлов + их сплавы, температура плавления которых ниже порога в 1000 градусов Цельсия.
Если температура плавления металла превышает 1 500 градусов Цельсия – его принято выделять в группу тугоплавких. Диаграмма выше четко дает понять, куда какой металл следует относить.
Обратите внимание: минимальная температура плавления у ртути — 39 градусов. Именно благодаря такому физическому свойству, мы можем наблюдать химический элемент в постоянно жидком состоянии.
Теперь пройдемся по легкоплавким сплавам. В своем большинстве – это сплавы эвтектического типа, пиковая температура плавления которых не превышает 232 градусов по Цельсию. В основе производства легкоплавких сплавов лежат легкоплавкие металлы – олово, висмут, таллий, галлий и другие.
Ученым удалось добиться -78 градусов в качестве минимальной температуры плавления для советского сплава, который состоит на 12% из натрия, 47% калия и 41% цезия. Недостаток сплава — реакция с водой. Ближайший конкурент – амальгама. Токсичный сплав из ртути с таллием, сохраняющий жидкое состояние до температуры -61 градус по Цельсию.
Область применения легкоплавких металлов/сплавов:
- энергетическая промышленность и машиностроение. Основное направление – создание тепловых носителей с жидкометаллического типа;
- литьевая промышленность;
- как основа для датчиков температуры, что актуально в системах пожарной безопасности;
- как основа для разработки термометров;
- как ремонтный материал в вакуумных технологиях;
- припои, предохранители и прочие мелочи в микроэлектронике;
- медицинское направление. То же протезирование;
- как металлическая смазка.
Низкая температура плавления является базовых свойством, которое требуется от легкоплавких металлов и сплавов. Вторичные параметры, которые берутся во внимание в различных областях использования – плотность, прочность на разрыв и инертность в химическом плане.
Понятие «вещество» в физике и химии. Физические и химические явления
I. Химические вещества и физические тела
Химия – это наука о веществах, их свойствах и превращениях друг в друга.
Все, что нас окружает, – люди, животные, растения, горы, моря, предметы – имеет непосредственное отношение к химии. Окружающие нас предметы и объекты называют физическими телами. Тела состоят из множества различных веществ. К настоящему моменту известно около 15 миллионов веществ, и это далеко не предел!
Гвоздь – это тело, состоящее из вещества – железа. Кусок гранита – это тоже тело, состоящее из нескольких веществ – кварца, слюды и полевого шпата. Рис. 1.
Рис. 1. Гранит и составляющие его вещества
Одни и те же тела часто изготавливают из разных веществ. Например, проволока может быть медной, железной, алюминиевой. И наоборот, из одного и того же вещества могут быть изготовлены различные тела: из стекла сделаны разные виды посуды, вазы и т. д.
Запомните! Каждое тело состоит из какого-либо вещества!
II. Физические и химические явления
Изменения веществ, которые не ведут к образованию новых веществ (с иными свойствами), называют физическими явлениями.
1. Вода при нагревании может переходить в пар, а при охлаждении – в лед .
2. Длина медных проводов изменяется летом и зимой: увеличивается при нагревании и уменьшается при охлаждении.
3. Объем воздуха в шаре увеличивается в теплом помещении.
Изменения с веществами произошли, но при этом вода осталась водой, медь – медью, воздух – воздухом.
Новых веществ, несмотря на их изменения, не образовалось.
Химическое явление (реакция) – явление, при котором образуются новые вещества.
А по каким признакам можно определить, что произошла химическая реакция? При некоторых химических реакциях происходит выпадение осадка. Другие признаки – изменение цвета исходного вещества, изменение его вкуса, выделение газа, выделение или поглощение тепла и света.
Признаки химических реакций:
- Изменение цвета исходного вещества
- Изменение вкуса исходного вещества
- Выпадение осадка
- Выделение газа
- Появление запаха
- Выделение света
III. Подведём итоги
1. Вещества могут участвовать в физических и химических явлениях.
2. Сравнительная характеристика физических и химических явлений представлены следующей интерактивной анимацией.
3. Отличие физических и химических явлений
- При физических явлениях молекулы вещества не разрушаются, вещество сохраняется.
- При химических явлениях молекулы вещества распадаются на атомы, из атомов образуются молекулы нового вещества.
IV. Задания для закрепления
№2. Посмотрите видео-эксперимент: «Взаимодействие соды с соляной кислотой» Какое явление вы наблюдали? Почему?
№3. Посмотрите видео-эксперимент: «Обугливание крахмала при нагревании и прокаливание поваренной соли». Какие явления вы наблюдали и почему?
№5. Поработайте с тренажёром: «Физические и химические явления»
№6. Поработайте с тренажёром и ответьте на вопросы:
- вопрос
- вопрос
- вопрос
- вопрос
- вопрос
Видео:“Горение магния в кислороде”(выделение тепла и света)
Диффузия в твёрдых телах
Диффузия в твёрдых телах обусловлена медленным переносом масс взаимодействующих веществ, который объясняется микроскопическим строением твердого вещества. Диффундирование, как физический процесс, используется при производстве фарфоровой, керамической посуды.
Явление диффузии объясняется хаотичным движением молекул, в процессе которого молекулы одного вещества проникают в межмолекулярные промежутки другого.
При увеличении температуры (нагревании) скорость движения молекул увеличивается. Поэтому процесс диффузии становится интенсивнее.
В горячем чае сахар растворяется быстрее. Тёплая вода лучше выполаскивает моющее средство. Запах свежей выпечки мы чувствуем вдалеке от пекарни.
Единица измерения и формулы
Единица измерения модуля Юнга в СИ — Ньютон на метр в квадрате (Н/м²), т.е. Паскаль (Па).
Формулы
Существует несколько формул, из которых можно вычислить модуль Юнга. Например, закон Гука.
Закон Гука
Можно вычислить модуль Юнга через эти формулы (мы это и сделаем на примере). Из-за этого закона существуют несколько интересных равенств, которые могут быть полезны для расчётов.
Закон Гука (этот описывает явления в теле, в дифференциальной форме):
- σ — механическое напряжение
- E — модуль Юнга (модуль упругости)
- ε — относительное удлинение
Закон Гука (этот описывает явления в теле)
- Fупр — сила упругости
- k × Δl — удлинение тела
- Fупр — сила упругости
- E — модуль Юнга (модуль упругости)
- S — площадь поперечного сечения
- l — первоначальная длина тела
- Δl — удлинение тела
- Fупр/S — механическое напряжение, обозначается как σ
- Δl/l — относительное удлинение, обозначается как ε
Следует заметить, что этот закон действует до той точки, когда материал необратимо деформируется и уже не возвращается в свою первоначальную форму. В какой точке это происходит, уже зависит от материала. Если материал очень жёсткий (значит высокое показание модуля упругости), то эта точка может совпадать с разрывом/деформацией.
Другие формулы вычисления модуля Юнга (модуля упругости)
- E — модуль Юнга (модуль упругости)
- k — жёсткость тела
- l — первоначальная длина стержня
- S — площадь поперечного сечения
Либо можно выразить k (жёсткость тела):
- k — жёсткость тела
- E — модуль Юнга (модуль упругости)
- S — площадь поперечного сечения
- l — первоначальная длина стержня/тела
Пример решения задачи (через закон Гука):
Проволока длиной 2,5 метра и площадью поперечного сечения 2,5 миллиметра² удлинилась на 1 миллиметр под действием силы 50 ньютонов. Определить модуль Юнга.
- l = 2,5 м
- F = 50 H
- E = ?
Будем искать через закон Гука (σ = E × ε).
Помним из закона Гука:
σ = F / S (помните, что Fупр/S — механическое напряжение, обозначается как σ)