Распиновка батареи ноутбука
Распиновка батареи ноутбука
Распиновкой называют обозначение контактов в разъемах, соответствующих схеме, но для монтажа в отверстиях. Функционально контакты соответствуют справочной нумерации. Распиновка разъема батареи, работающей с ноутбуком, потребуется в тот момент, когда батарея перестанет заряжаться. В каждом разъеме 6,7, 9 контактов, которые зеркальны на источнике энергии и потребителе. Но расположение контактов зависит от компоновки, и у производителей электронные схемы не совпадают. Маркировки нет. Но распиновка есть в схемах производителей.
Пример распиновки разъема ноутбука перед вами:
- DATA+ для поступления напряжения;
- DATA- нулевой контакт;
- вывод ID;
- вывод SMB для передачи состояния аккумулятора;
- вывод BATT_IN для сигнала подключения;
- вывод SCL/SDA для двунаправленных линий связи интегральных схем
- вывод NC
Схема включения КР142ЕН5А
Как видно, микросхема DA1 включена по типовой схеме в плюсовое плечо СН. С появлением специализированных микросхем ситуация изменилась. Выпускаемые микросхемные стабилизаторы напряжения способны работать в широких пределах выходных напряжения и тока, часто имеют встроенную систему защиты от перегрузки по току и от перегревания — как только температура кристалла микросхемы превысит допустимое значение, происходит ограничение выходного тока.
Если исходить из того, что напряжение на эмиттерном переходе транзистора VT1 и прямое напряжение диода VD1 примерно одинаковы, то распределение тока между микросхемой DA1 и регулирующим транзистором зависит от отношения значений сопротивления резисторов R2 и R1.
Все сказанное служит только для предварительного выбора стабилизатора, перед проектированием блока питания следует ознакомиться м полными справочными характеристиками, хотя бы для того, чтобы точно знать, каково максимально допустимое входное напряжение, достаточна ли стабильность выходного напряжения при изменении входного напряжения, тока нагрузки или температуры.
СН с регулируемым выходным напряжением, выходное напряжение которого можно регулировать от 0 до 10 В.
Облегчить режим работы микросхемы в подобных случаях можно, подключив к ней внешний регулирующий транзистор.
При этом нужно обязательно учитывать различия цоколевки микросхем для положительных и отрицательных напряжений. Для достижения очень высокого значения коэффициента подавления пульсаций вход регулирования может быть зашунтирован емкостью.
Такое схемотехническое решение заимствовано из [1].
Работа стабилизатора напряжения КРЕН8Б
Распиновка LM386
Из распиновки (вид сверху) видно, что LM386 — это простая ИС усилителя, требующая минимального количества внешних компонентов. В следующей таблице показаны функции каждого вывода LM386.
Контакты 1 и 8 являются выводами регулировки усиления. По умолчанию коэффициент усиления LM386 установлен на уровне 20. Когда конденсатор подключен между выводами 1 и 8, он обходит внутренний резистор (который отвечает за установку коэффициента усиления 20) и увеличивает коэффициент усиления до 200.
Контакты 2 и 3 являются инвертирующими и неинвертирующими входами усилителя (внутри они подключены к операционному усилителю). Через эти выводы подается входной аудиосигнал с таких устройств, как микрофон, мобильные телефоны, ноутбуки и т. д.
Примечание: инвертирующий вход (контакт 2) LM386 обычно подключается к земле.
Контакты 6 и 4 являются контактами питания. Максимальное питание для LM386 составляет 15 В. В нашем случае мы использовали источник питания 12 В.
Контакт 7 задает путь для развязки, и конденсатор должен быть подключен между контактом 7 и землей. Контакт 5 является выходным контактом. Перед подключением выхода к динамику необходимо выполнить надлежащую фильтрацию, поскольку любой сигнал постоянного тока может привести к необратимому повреждению динамика.
Разъемы питания процессора
Энергопотребление процессоров неуклонно росло последние 20 лет, что потребовало дополнительных разъемов питания для них. И в спецификациях ATX12V был введен дополнительный 4-контактный разъем питания процессора +12 В.
8-контактный разъем питания процессора
Несмотря на то, что 4-контактный разъем питания процессора рассчитан на максимальную мощность до 288 Вт (при использовании контактов Plus HCS), в спецификации EPS12V версии 1.6, появившейся в 2000 году, был представлен 8-контактный разъем питания процессора. Первоначально этот разъем использовался в серверах с серьезными нагрузками на систему питания, но впоследствии перекочевал и в обычные ПК.
Сегодня даже на бюджетных материнских платах мы встречаем именно этот разъем, который теоретически может подать на питание процессора мощность до 576 Вт.
4-контактный и 8-контактный разъемы совместимы между собой. Если на вашем БП есть только 4-контактный кабель питания, он подойдет в 8-контактный разъем на материнской плате. А 8-контактный кабель, соответственно, подойдет в 4-контактный разъем.
Значения передаваемой мощности выглядят просто фантастически, но вы должны понимать, что это теоретическая мощность. На практике производители топовых материнских плат, ориентированных на разгон, ставят два 8-контактных разъема питания процессора.
Например, на MSI MEG Z490 ACE. Увеличение контактов разъема и сечения проводов приводит к снижению их нагрева и, как следствие, к безопасной работе.
Внимание! При подключении 8-контактных разъемов питания процессора и видеокарты нужно учитывать, что несмотря на то, что они не совпадают по скосам контактов, их вилки очень похожи. При определенном усилии можно воткнуть вилку питания процессора в разъем на видеокарте и наоборот. Это приведет к замыканию и выходу оборудования из строя.
Что такое симистор и как используется
Любая электроника основана на комплексе различного рода элементов, которые обеспечивают функционирование электроприборов. Симистор – один из необходимых микроприборов. Смотрите обзор видов светодиодных фитоламп для рассады растений здесь: https://howelektrik.ru/osveshhenie/lampy/svetodiodnye-fitolampy-dlya-rassady-rastenij-obzor-vidov-i-kak-vybrat.html.
На фото представлены симисторы
Что это такое?
Симистор – полупроводниковый прибор, получивший свое названия от слов СИМетричный тирИСТОР. Изобретен в СССР, на одном из заводов, и запатентован на полгода раньше, чем в США.
Принцип работы
Принцип работы симистора основан на обеспечении проходимости электрического тока в обоих направлениях, а не в одном, как в тиристоре. Одним из несомненных преимуществ симистора является и тот факт, что для обеспечения проходного канала не требуется наличие постоянного уровня напряжения на управляющем ключе. Достаточно лишь наличие его не выше определенного уровня, в зависимости от применения.
Виды симисторов
Говоря о видах симисторов, следует принять тот факт, что это симистор является одним из видов тиристоров. Когда имеются в виду различия по работе, то и тиристор можно представить своего рода разновидностью симистора. Различия касаются лишь по управляющему катоду и в разных принципах работы этих тиристоров. Читайте что такое импульсный блок питания.
Импортные симисторы широко представлены на отечественном рынке. Их основное отличие от отечественных симисторов заключается в том, что они не требуют предварительной настройки в самой схеме, что позволяет экономить детали и место на печатной плате. Как правило, они начинают работать сразу после включения в схему. Следует лишь точно подобрать необходимый симистор по всем требуемым характеристикам.
- На замену Z00607 хорошо подходят ы BT131-600, только они максимально подходят по всем характеристикам
На снимке BT131-600
m2lz47 представлен ан фото
На снимке представлен тс122 25
Схемы управления
Схемы управления симистором отличаются простотой и надежностью. Там, где без применения симисторов требовалось большое количество деталей, и производилась тщательная подгонка по параметрам – симисторы значительно упростили всю принципиальную схему. Включение в схему только основных элементов позволяет миниатюризировать не только саму печатную плату, но и весь прибор в целом. Читайте принцип работы индикаторной отвертки.
Схема управления симистором на рисунке
Схема диммера на симисторе
Схемы управления скоростью вращения двигателя принципиально ничем не отличаются по принципу построения от других аналогичных. Нюансы касаются только параметров тока и напряжения на двигатель.
Управление симистором через оптопару позволяет подключать электрооборудование, которым нужно управлять. Непосредственно к компьютеру через порт LPT. Оптопара в данном примере позволяет защитить непосредственно материнскую плату компьютера от перегрузки и выхода из строя. Своего рода умны предохранитель с функцией управления.
Управление симистором через оптопару на схеме
Схема управления симистором с микроконтроллера на рисунке
Регулятор мощности
Регулятор мощности на симисторе обычно требует включения симистора в одну из ветвей выпрямителя, чтобы путем изменения импульсов питания двигателя добиться как можно маленьких промежутков в подаче питания на двигатель, чтобы не терялась мощность на низких оборотах.
Регулятор мощности на симисторе на схеме
Регулятор мощности на симисторе для индуктивной нагрузки – самая интересная ветвь применения симисторов. Проблема применения симисторов на индуктивной нагрузке заключается в том, что при многих диапазонах частот при подаче управляющего импульса сам симистор просто не успевает открыться. В итоге детали сгорают, эффекта ноль. Одна из очень немногих схем предлагает решение в посылке нескольких импульсов вместо одного.
Регулятор мощности на симисторе для индуктивной нагрузки на схеме
Использование
Симисторы применяются практически везде. Это и блоки питания, и регуляторы мощностей и напряжения в бытовых приборах, в аудио и видеотехнике, в самолето- и автомобилестроении.
Симисторный регулятор скорости не занимает много места, практические решения по использованию симистора в регуляторах различаются только показателями регулируемой скорости. Вследствие этого используются те или иные детали.
На снимке симисторный регулятор скорости
Симисторный регулятор напряжения на фото
Симисторный регулятор на вентилятор изображен на фото
Как проверить?
На фото проверка исправности симистора
Проверка исправности тиристора на снимке
Как проверить мультиметром?
Симистор проверяется следующим образом. Для этого нужно два стрелочных омметра. Один подключаем к аноду и катоду симистора, а второй присоединяем к одному из анодов одним щупом. На первом омметрепри рабочем синисторе будет наблюдаться сопротивление, стремящееся к бесконечности, но после присоединения второго щупа к управляющему электроду произойдет отпирание ключа и на первом приборе сопротивление моментально исчезнет. Ознакомиться с руководством как выбрать детектор скрытой проводки и как им пользоваться можно здесь.
Можно проверить симистор мультиметром не выпаивая, но управляющий электрод отсоединить все-таки нужно. При присоединении омметра к аноду и катоду будет отмечаться бесконечное сопротивление, но после кратковременного замыкания управляющего электрода к плате произойдет отпирание затвора симистора
На снимке проверка симистра мудьтиметром
Стоимость
Стоимость симисторов не высока, так как это уже далеко не деталь высоких технологий. Самые дорогие элементы из семейства симисторов стоят не дороже ста рублей за одну штуку.
Где купить симисторы?
Симисторы можно купить в лбом магазине, торгующим радиоэлектронными компонентами. Продаются как отечественные, так и импортные варианты полупроводников.
- Зао ЧИП и ДИП, ул. Перерва, д. 49 тел. +7 495 544-00-08 тел. 495-3472800
- Терра Электроника Москва, ул. Дербеневская, дом 1, Бизнес-парк «Дербеневский»,
корп. 1, подъезд 23 тел.: (495) 221-78-03 - Чипрезистор ул. Большая Черёмушкинская, д.25, стр.97 тел.: 8(499)7-555-078
- ЗАО Atlas Electronic Group Серпуховскаяул., 18, оф.1А, тел.: +7 (812) 325-08-56
- Коломяжский пр., д. 26, тел.: +7 (812) 300-35-63;
- Трамвайный пр., д. 12 тел.: +7 (812) 377-17-25
Видео
Смотрите на видео как проверить симистор:
Симисторы – ключевые детали в современных полупроводниковых приборах, и без них многие бытовые приборы были бы несравненно больше и часто выходили бы из строя, а о точности их работы не могло вестись вообще никаких разговоров.