Aniks-lift.ru

Подъемное оборудование
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схема: преобразователь постоянного тока 3,7 Вольт, 5 В, 6 В

Схема: преобразователь постоянного тока 3,7 Вольт, 5 В, 6 В

В этой статье представлен простой и недорогой преобразователь постоянного тока, который преобразует вход батареи 3,6–3,7 В в три выхода 6 В, 5,3 В и 5 В. Эти выходы напряжения могут использоваться одновременно или по отдельности. Конвертер полезен для цифрового и аналогового аудиооборудования, включая портативные усилители звука и MP3-плееры, а также для экспериментов с цифровой и аналоговой электроникой. Аккумуляторы 3,7 В и 3,6 В (3 × 1,2 В) широко доступны по низкой цене. Но большая часть оборудования работает от 5В или 6В. Таким образом, вы не можете использовать батареи 3,7 В и 3,6 В, даже если вы используете две батареи 3,7 В (3,7 × 2 = 7,4 В) или четыре батареи 1,2 В (1,2 × 4 = 4,8 В). Следовательно, вам нужен небольшой преобразователь постоянного тока, чтобы получить 5 В, 6 В или оба из них, в зависимости от предполагаемого применения. Описанный здесь преобразователь обеспечивает простое решение с использованием микросхемы MC34063A.

Эквивалентная схема переключателя нагрузки

Даже когда переключатель нагрузки Q1 переключается с ВКЛ на ВЫКЛ, напряжение на выходном выводе Vo будет всё-ещё оставаться в течение определенного периода времени в зависимости от емкости CL нагрузки на выходной стороне.

Управление мощной нагрузкой через транзистор

Если напряжение на Vi ниже чем Vo, обратный ток может течь с выхода Vo на вход Vin через паразитный диод, образованный между стоком и истоком полевого МОП-транзистора Q1. Необходимо убедиться, что номинальный ток полевого транзистора Q1 не превышается ни при каких обстоятельствах. Кроме того, при определении значения емкости входного шунтирующего конденсатора CIN, следует учитывать время нарастания с учетом условий нагрузки.

Вот эквивалентная принципиальная схема переключателя нагрузки:

Управление мощной нагрузкой через транзистор

А теперь перейдём к практике и соберём реально работающий переключатель нагрузки на силовом полевом транзисторе MOSFET. Тут обычный небольшой ползунковый переключатель будет управлять функцией включения / выключения питания.

Элементная база

  • любой индикаторный светодиод с прямом током до 50 мА — http://alii.pub/5lag4f
  • мощный биполярный транзистор D882 с npn-структурой в пластмассовом корпусе или его довольно многочисленные импортные аналоги — http://alii.pub/5vunm9
  • управляемый интегральный стабилитрон TL431 в корпусе та TO92 — http://alii.pub/5mclsi
  • три резистора номиналом 47 Ом, 680 Ом и 1 кОм с рассеиваемой мощностью 0,25 Вт — http://alii.pub/5h6ouv

Цоколевка транзистора и управляемого стабилитрона приведена на эскизе.

Схема зарядного устройства Liion аккумулятора с индикатором полного заряда

Схема простого повышающего преобразователя DC-DC с использованием микросхемы таймера 555

В этом проекте мы будем создавать схему повышающего преобразователя с использованием микросхемы таймера 555. Повышающий преобразователь — это не изолированный импульсный источник питания, который используется для повышения напряжения. Другими словами, это дает более высокое выходное напряжение по сравнению с входным.

Схема очень похожа на понижающий конвертерhttps://circuitdigest.com/electronic-circuits/simple-555-timer-based-buck-regulator-circuit-for-led-dimmers-and-dc-motor-speed-control, который мы разработали для управления двигателем и светодиодной лентой, которая предназначается для понижения входящего напряжения. Повышающие преобразователи находят применение во многих типах нашего бытового оборудования. Это очень распространенные схемы силовой электроники, которые широко используются с солнечными панелями и другими технологиями, и являются одной из самых важных схем в настоящее время.

В этой статье мы узнаем о понижающих преобразователях и спроектируем очень простой повышающий инвертор с использованием таймера 555 и IRFZ44N, N-канального МОП-транзистора.

Работа повышающего преобразователя DC-DC

Повышающий преобразователь используется для увеличения выходного напряжения благодаря уменьшению тока, это достигается за счет сохранения энергии в катушке индуктивности, и, поскольку энергия в дросселе не может изменяться мгновенно, она начинает накапливать энергию в своем магнитном поле.

Читайте так же:
Как правильно выбрать болгарку для дачи

Ток протекающий через катушку индуктивности (дроссель) определяется выражением I, и, поскольку сопротивление и ток постоянны, единственное значение, которое может измениться, — это напряжение. Как показано на рисунке ниже, дроссель соединен последовательно с источником напряжения для постоянного включения и выключения цепи.

Переключатель подключен параллельно источнику напряжения и катушке индуктивности для достижения быстрого переключения. Мы здесь используем полевой МОП-транзистор вместе с драйвером полевого МОП-транзистора. Схема подключена к нагрузке и параллельно ей конденсатор. Чтобы ограничить обратный ток от конденсатора, между емкостью и полевым МОП-транзистором используется диод.

Катушка индуктивности пытается противостоять изменению тока, чтобы обеспечить постоянный входной ток, и, следовательно, повышающий инвертор действует как источник входного постоянного тока, в то время как нагрузка действует как источник постоянного напряжения. Эта схема очень похожа на понижающий преобразователь и иногда называется обратным понижающим инвертором.

N-канальный полевой МОП-транзистор управляется ШИМ-сигналом, здесь мы использовали таймер IC 555 для обеспечения вывода на полевой МОП-транзистор. Конденсатор используется для хранения заряда и обеспечения постоянной выходной мощности нагрузки. Схема работает в 2 этапа, на 1 ступени переключатель включен, а на 2 ступени переключатель находится в выключенном состоянии.

Этап 1: Включен: режим зарядки

В этом состоянии переключатель MOSFET включен. Используемый нами полевой МОП-транзистор представляет собой N-канальный полевой МОП-транзистор IRFZ44N, вывод затвора подключен к выводу 3 таймера IC555. Когда переключатель находится в состоянии ВКЛ, он замыкает цепь через катушку индуктивности, и на нее подается напряжение, в результате чего вокруг него создается магнитное поле. Поскольку он предлагает путь с очень низким сопротивлением, все напряжение проходит через переключатель и возвращается к источнику питания, как отмечено красной линией на рисунке ниже.

Схема-1

Конденсатор, который был ранее заряжен на последнем этапе, пытается разрядиться через полевой МОП-транзистор, и чтобы остановить его, мы используем диод, для того чтоб прекратить заряд конденсатора, протекающий в обратном направлении.

Этап 2: выключатель выключен: режим разряда

Когда переключатель находится в выключенном состоянии, путь зарядки индуктора не завершается, следовательно, полярность индуктора меняется на обратную, и магнитное поле вокруг него схлопывается, в результате генерируется скачок напряжения, который проходит через диод и заряжает конденсатор. Суммарная энергия от катушки индуктивности и источника используется для зарядки конденсатора, а также проходит через нагрузку.

Схема-2

Рабочий цикл:

Общее время цикла переключения называется периодом времени (T), время включения и время выключения переключателя задается как Ton и Toff соответственно. Следовательно:

Частота (f) определяется как

Рабочий цикл (D) определяется как общее время, в течение которого переключатель находится во включенном состоянии, по отношению к общему периоду времени. Продолжительность включения определяется по формуле:

Используя закон напряжения Кирхгофа, мы можем получить установившееся состояние повышающего преобразователя. Здесь мы будем считать, что схема является идеальной, и в течение всего процесса не теряется мощность, а именно:

Теоретически за один полный цикл чистое изменение тока катушки индуктивности равно нулю, а отношение входного напряжения Vin к выходному напряжению (Vout) определяется как:

Расчетное значение индуктора:

Мы знаем, что средний входной ток (Iavg) равен среднему току индуктора (ILavg). Следовательно, средний ток катушки индуктивности можно рассчитать следующим образом:

Схема-3

Пульсации индуктора обычно составляют 20-40% от среднего выходного тока.

Схема-4

Расчет зарядного конденсатора:

Расчет времени заряда конденсатора Tc = R*C

Здесь R — сопротивление цепи зарядки, а C — емкость конденсатора. В нашей схеме, представленной ниже, цепь зарядки следует по пути, отмеченному красным, то есть R3> D2> C2.

Читайте так же:
Как снять статор на болгарке

Чтобы рассчитать номиналы входного резистора и конденсатора, вы также можете использовать этот онлайн-калькулятор.

Схема-5

Расчет выходного конденсатора:

Схема-6

Выбор компонентов

Я разработал схему на Eschema, KiCad и выполнил расчет необходимых компонентов, используя приведенные выше формулы. Затем сделал схему на макетной плате. Принципиальная схема, разработанная в KiCad, приведена ниже.

Необходимые компоненты:

  • 1 х NE555
  • 1 x IRFZ44N — N-канальный полевой МОП-транзистор
  • 1 x 100 мкГн, индуктор
  • 1 х 1 кОм, резистор
  • 2 диода IN4001
  • 1 х IN5822 диод
  • 1 x 100 нФ, конденсатор
  • 1 х 1 нФ конденсатор
  • 1 потенциометр 50 кОм
  • 2 x 2-контактный разъем (для подключения входа и выхода схемы)

Что следует помнить при выборе компонента:

MOSFET : вам нужно выбрать MOSFET, который сможет выдерживать максимальное выходное напряжение, поэтому его напряжение пробоя должно быть выше, чем максимальная мощность преобразователя

Диод : Для операций с низким напряжением я использовал IN5822, потому что низкая скорость IN4007 делает его непригодным для наших операций. Нам нужно выбрать быстрый диод, я попытался использовать диод IN4007 в качестве выходного диода, но из-за проблем с производительностью я переключился на более быстрый IN5822.

Как работает схема повышающего преобразователя

В схеме используется микросхема IC 555 в нестабильном режиме в качестве генератора ШИМ, и, следовательно, вся схема построена примерно так же. Подключения всех 8 контактов указаны ниже:

  • Контакт 1 подключен к шине заземления.
  • Контакты 2 и 6 с заземлением через конденсатор емкостью 1 нФ.
  • Контакт 3 выдает выходной сигнал и, таким образом, подключен к затвору N-канального МОП-транзистора IRFZ44N. Этот вывод отвечает за управление выходом ШИМ на затвор полевого МОП-транзистора.
  • Контакт 4 необходимо подключить к источнику питания
  • Контакт 5 помогает стабилизировать выход, поэтому он подключен к земле через конденсатор емкостью 0,01 мкФ. Это также помогает обеспечить невосприимчивость к электрическим помехам.
  • Вывод 7 подключен к инвертированной диодной установке; переход подключен к положительной шине через резистор 1 кОм.
  • Контакт 8 необходимо подключить к источнику питания.

Основным компонентом любого SMPS является переключатель, здесь в этой схеме мы используем N-канальный MOSFET IRFZ44N в качестве переключателя. Он управляется слабым сигналом от IC 555, поэтому логический элемент IRFZ44N подключен к IC 555. Сток обеспечивает отрицательное переключение цепи, а источник заземлен. Он имеет следующую спецификацию:

RDS (вкл.) = 17,5 мОм

Тестирование схемы повышающего преобразователя Dc Dc на основе таймера 555

Я тестировал схему с литий-ионным аккумулятором 3,7 В, аккумулятор был заряжен примерно до 3,4 В. Я подключил элемент к повышающему преобразователю, и напряжение на нем показало 7,5 В. Изображение выхода на выходе повышающего преобразователя показано ниже.

Чтобы проверить ток, я заменил провод мультиметра на токовый щуп (не забудьте выбрать диапазон 10 А или 20 А на вашем мультиметре, чтобы защитить его от повреждения). Ток показывал 3,2 А, таким образом, эта схема способна производить около 30 Вт. Схема работала правильно и смогла повысить напряжение.

Отсутствие обратной связи приводит к падению напряжения в цепи при подключении нагрузки. Обратная связь, используемая повышающими преобразователями, гарантирует, что рабочий цикл остается стабильным даже при подключенной нагрузке. Мы можем легко обеспечить обратную связь, используя микроконтроллер для измерения измененного выходного сигнала, а затем изменять входное сопротивление, что делает эту схему более полезной и практичной для большинства операций.

Это очень простая, но эффективная схема, которую можно использовать, если вам будет нужно более высокое напряжение, чем может обеспечить ваш источник напряжения, при одновременном снижении потерь мощности в вашей цепи. Эта схема была способна выдавать мощность более 30 Вт. Хотя для создания схемы рекомендуется использовать хотя бы перфокарту, так как обычные макетные платы предназначены для маломощных приложений.

Читайте так же:
Зарядное устройство для автомобильного аккумулятора большой емкости

Если вам нужен постоянный выход, вы должны использовать постоянный резистор вместо потенциометра, чтобы повысить общую эффективность конструкции. Основным недостатком этой схемы является то, что из-за отсутствия обратной связи падение напряжения при подключении нагрузки довольно велико.

И последнее: создавать схему, которая может быть спроектирована из простых компонентов, лежащих на нашем рабочем столе, — это весело.

PicHobby.lg.ua

В статье расскажу, как сделать простой стабилизатор тока для светодиодов на полевом транзисторе.

Описание задумки.

Задолго до разработки фонарика на ATtiny13 мне уже доводилось работать со сверх-яркими светодиодами. И что могу сказать. Редкий радиолюбитель жаждет чтобы светодиоды перегорали, как можно чаще! :). Особенно мощные и дорогие. Вот и мне этого не хотелось и решил взяться за разработку стабилизатора тока.

Немного теории.

Мне часто задают один и тот же вопрос, мол почему именно стабилизатор тока лучше для светодиодов, а не стабилизатор напряжения. Ответ простой, но он многим не нравиться. Постараюсь пояснить на вольт-амперной характеристики(ВАХ) SMD светодиода типоразмера 3528, рисунок 1.

Вольт-амперная характеристика(ВАХ) SMD светодиода типоразмера 3528

Рисунок 1 – Вольт-амперная характеристика(ВАХ) SMD светодиода типоразмера 3528 при 25⁰С.

Ось У – ток через светодиод.

Ось Х – падение напряжения на светодиоде.

Теперь внимание! Заявленный производителем ток для данного светодиода равен 20мА. Смотрим на рисунок и видим, что ток 20 мА приблизительно соответствует напряжению на светодиоде 3,4В. Если поднять напряжение на светодиоде до 3,5В, а это всего лишь на 0,1В больше чем его типовое напряжение, то ток увеличиться до 50мА, а это в 2,5 раза больше чем его заявленный ток. Если всё перевести в процентное соотношение, то получиться что ток возрастает в 2,5 раза, при увеличении напряжения всего лишь на 3%(округлил). Вот почему стабилизатор напряжения должен быть практически идеальным!

Теперь рассмотрим стабилизатор тока. Если стабилизировать ток 20мА, то увеличение тока на 3% даст результат – 20,6мА. Согласитесь, что это совсем другой результат и он куда лучше предыдущего!

Иногда мне пытаются доказать, что последовательное соединение светодиодов + стабилизатор напряжения лучше, чем параллельное + стабилизатор тока. Это, конечно, тема для отдельной статьи, но хочу тут немного пояснить, что параллельное соединение однозначно выигрывает.

Для примера возьмём пять светодиодов 20мА, 3,4В и соединим их последовательно и параллельно. При последовательном соединении если один светодиод перегорает и остаётся замкнутым, а такое бывает и часто, напряжение 17В(3,4В*5шт) делится между оставшимися четырьмя светодиодами в равных пропорциях (предположим что так). Получается, что падение напряжение на каждом светодиоде будет — 4,25В (17В/4шт). Ток при этом возрастает до неимоверных значений, а это приводит к последовательному перегоранию оставшихся светодиодов или части из них.

При параллельном соединении и стабилизации тока в 100мА(20мА*5шт) перегорание светодиода приведёт к увеличению тока на оставшихся всего на 5мА(20мА/4шт). Или по-другому: 100мА/4шт = 25мА – ток на каждом светодиоде. Разница очевидна! В этой статье не буду больше приводить плюсы и минусы каждого из решений, статья совсем о другом. Надеюсь пример был понятным. Мой личный выбор всегда на стороне параллельного соединения светодиодов и стабилизатора тока для них. Если и ваш тоже, то читайте дальше, как сделать несложный стабилизатор тока для светодиодов.

О схеме.

Принципиальная схема стабилизатора тока на полевом транзисторе показана на рисунке 2.

Стабилизатор тока на полевом транзисторе схема

Резистор R1 нужен для того чтобы транзистор VT2 открывался. Стабилитрон VD1 защищает затвор от перенапряжения, для транзистора P0903BDG максимальное напряжение затвор-сток – 20В. Если у вас другой транзистор, то информацию на него смотрите в даташите. Параметр этот называется Gate-Source Voltage. Если напряжение питание значительно меньше максимального напряжения затвор-сток, то можно вообще стабилитрон не ставить. Резисторы R2-R6 выполняют роль шунта. На схему добавил их побольше чтобы можно было удобно подобрать нужный номинал.

Читайте так же:
Инструмент для сверления отверстий в металле

Схема работает следующим образом. В начальный момент времени транзистор VT2 открыт, ток протекает через светодиоды и шунт из резисторов R2-R6, транзистор VT1 закрыт. При протекании тока через шунт на нём падает определённое напряжение и если оно равняется напряжению открытия транзистора VT1, то он открывается и «садит» затвор транзистора VT2 на минус питания, транзистор VT2 закрывается и ток через светодиоды и шунт начинает снижаться. При снижении тока через светодиоды будет снижаться падение напряжение и на шунте, как только напряжение станет меньше чем нужно для открытия транзистора VT1, он закроется и «освободит» затвор транзистора VT2. Транзистор VT2 снова откроется и ток устремиться к светодиодам и шунту. Дальше все повторяется по кругу.

Настройка.

Настройка схемы заключается в определении необходимого тока для светодиодов и подбору номиналов резисторов шунта. Приблизительно считаю, что падение напряжение на шунте должно быть около 0,5В. Этого напряжения достаточно для открытия транзистора VT1. Хотя по даташиту напряжение база-эмиттер для транзистора BC846 – 0,66В, для отечественных – 0,7В.

В качестве примера рассчитаю для вас номиналы резисторов шунта на ток 170мА.

Сопротивление шунта(Ом) = падение напряжение на шунте(В) / ток через шунт (А), получается: Сопротивление шунта = 0,5В / 0,17А = 2,94 Ом. Полученный результат округляю до 3 Ом. Из стандартного ряда можно взять два резистора номиналом 1 Ом и 2 Ом и впаять их на плату, как R2, R3. Резисторы R4-R6 при этом исключаются из схемы.

Дальше нужно проверить какой ток стабилизирует стабилизатор. Для проверки потребуется амперметр или миллиамперметр. Прибор нужно подключить в разрыв любого из проводов питания, подать питающее напряжение, оно, кстати, должно быть больше чем типовое питание светодиодов. Лучше использовать источник питания с возможностью регулировки выходного напряжения. Подключаем, регулируем, смотрим.

В определённый момент времени ток через стабилизатор перестанет меняться – это и будет током стабилизации. Дальнейшее увеличение напряжения ничего не изменит, разве что добавит разогрев транзистора VT2. Нужно понимать, что всё избыточное напряжение будет выделяться на транзисторе VT2 в качестве тепла. Если ток стабилизации получился таким какой нужен значит подбор шунта закончен, если же ток отличается от нужного значения в большую сторону – увеличиваем сопротивление шунта, в меньшую – уменьшаем.

О печатной плате.

Печатную плату разрабатывал под SMD компоненты в программе P-CAD 2006. Размеры платы – 37×18мм, рисунок 3. Вы можете разработать свою печатную плату и прислать мне файл для размещения на сайте.

Печатная плата стабилизатора тока на полевом транзисторе

О деталях.

Перечень деталей, необходимых для сборки стабилизатора тока, свёл в таблицу 1.

Блок питания можно разделить на 3 части:

1. Внутренний блок питания

Это блоки питания необходим для запитки вентилятора охлаждения, шим контроллера и вольтамперметра. Сюда подойдет любой блок питания с небольшой мощностью. Лучше конечно не собирать свой а использовать готовые решения, к примеру можно взять AC-DC преобразователь.

Внутренний блок питания на 12 Вольт, для питатния схемы блоки питания

2 Блок управления.

Блок состоит из микросхемы TL494 и драйвера на 4-х транзисторах.

Схема включения TL494 получается очень простая, такая схема подключения довольно распространена у радиолюбителей. При помощи резистора R4 осуществляется регулировка напряжения от 0 до максимального значения, а при помощи R2 задается максимальное значение силы тока. Резисторы R11 и R12 можно использовать многооборотные.

Читайте так же:
Из чего сделать дисковый окучник

Блок управления можно собрать на отдельной плате.

Блок управления на микросхеме TL494

Печатная плата блока управления

Печатная плата блока управления на TL494

Печатная плата блока управления на TL494

3 Силовая часть

Большую часть деталей можно взять из старого блока питания компьютера, входной фильтр, выпрямитель, конденсаторы тоже берем из него.

Далее нам необходимо изготовить трансформатор управления силовыми ключами. Большинство радиолюбителей пугает тот факт что придется изготавливать трансформатор. Но в нашем случае все просто.

Для изготовления трансформатора понадобится колечко R16 x 10 x 4.5 и провод МГТФ 0.07 кв. мм. Провод берем 3 отрезка по 1 метру и делаем 30 витков в 3 провода на кольце.

Дроссель L1 также наматывается на ферритовое кольцо медным проводом длинной 1.5-2 метра и сечением 2 мм. Такая намотка позволят достичь приблизительно требуемой индуктивности.

Во множестве блоков питания есть второй дроссель на ферритовом стрежне, в качестве L2 можно взять его.

Силовой трансформатор тоже берется из блока питания от компьютера, но выходное напряжение будет 20 Вольт. Для того чтобы получить 30 Вольт, силовой трансформатор нужно перемотать. Для больших токов предпочтительнее брать ферритовые кольца.

Изолированное управление затвором для мостовых преобразователей

Мостовые и полумостовые преобразователи — это устройства, в которых требуется очень надежная изолированная схема управления. В то время как один из ключей закрыт, ключ на другой стороне моста будет открыт. В результате на выключенном устройстве будет присутствовать большое синфазное напряжение.

На рис. 7 показана схема, рекомендуемая для полумостового преобразователя. В ней управлять затворами должны два трансформатора. Не пытайтесь использовать только один трансформатор и схему с тремя состояниями, как советуют в некоторых руководствах по применению!

Для управления затворами в полумостовых преобразователях рекомендуются два отдельных трансформатора

Рис. 7. Для управления затворами в полумостовых преобразователях рекомендуются два отдельных трансформатора

В мостовом преобразователе, показанном на рис. 8, также требуются два трансформатора для управления затворами. Двойные вторичные обмотки в каждом трансформаторе используются для управления парами ПТ в диагонально противоположных плечах моста. Для обоих типов мостов схемы управления затворами должны тщательно тестироваться во время переходного процесса при включении, когда возникают большие пиковые токи, и отрицательные напряжения на затворах невелики.

Схема мостового преобразователя с двумя трансформаторами для повышения надежности

Рис. 8. Схема мостового преобразователя с двумя трансформаторами для повышения надежности

В схеме моста с фазовым сдвигом (рис. 9) для управления затворами также используются два трансформатора. Но обратите внимание на отличие: каждая сторона моста работает с фиксированной относительной длительностью 50%, что позволяет использовать один трансформатор с двумя вторичными обмотками противоположной полярности. Это одна из немногих схем, где можно применять биполярную схему управления затвором без снижения надежности. Но выбросы, возникающие во время переходных процессов при выключении, не должны приводить к открытию транзисторов. Обратите внимание на полярность вторичных обмоток.

Мост с фазовым сдвигом с двунаправленными трансформаторами в каждом плече

Рис. 9. Мост с фазовым сдвигом с двунаправленными трансформаторами в каждом плече

Заключение

Схема управления затвором — критически важная часть проекта преобразователя. Убедитесь в том, что вы используете правильную схему, и не копируйте вслепую схемы из руководства по применению. Трансформаторы в цепях управления затворами придают вашему проекту такую степень надежности, которую невозможно получить при использовании полупроводниковых решений. Если вы разрабатываете очень мощное устройство, то это важнейшая составляющая. Добавление активных элементов для того, чтобы, согласно общепринятому мнению, увеличить скорость переключения, обычно не дает улучшения общей производительности, но вносит новые возможности для потенциальных отказов. Делайте вашу схему управления затвором как можно более простой.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector